LunarLander-v2 / config.json
Vaibhavoutat's picture
FirstCommit
0624dbe
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b43d4c310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b43d4c3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b43d4c430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b43d4c4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f3b43d4c550>", "forward": "<function ActorCriticPolicy.forward at 0x7f3b43d4c5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3b43d4c670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b43d4c700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3b43d4c790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b43d4c820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b43d4c8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b43d4c940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3b43d45e80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2016000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679404134399105662, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOjt7xBeZm8RB6uvb4xfL0Q39w92zezPgAAgD8AAIA/zc44vtTO5T4GqoE+O8SxvslLMTy1XeI9AAAAAAAAAADN6iC9Kf5avM8WD76DAxq+2oTOPSWk/j4AAIA/AACAPw10yL2Nbps/09oVv3WeE78PJKW9PZhnvgAAAAAAAAAAM113PY8ufrqyftA1jRd/MDhiBToSIfe0AACAPwAAgD8AnAg8FES2P30J6D35rz076KQBvJl2sTsAAAAAAAAAAJr5pTzy8p8+Qt5CvXlMjL6+Yy09SmCwvQAAAAAAAAAAzZ7nPI8merqgGlu272VgsVEL1bpBA4U1AACAPwAAgD8mDZy9GmzdPkB50T2TIqS+tL5NO5sGUD0AAAAAAAAAANrebb6a+ZE/pEmSvrLiDr9w9qu+v9KqPAAAAAAAAAAAzWZOvLEHKz7KGTi+lv2QvkmWi70yJSS9AAAAAAAAAAAAggw+BoZ7P9aOnD6lI+G+x1sQPqvhTD0AAAAAAAAAAJpv3LxfHYo/6i9CvV+H574S/qe9MzbuvAAAAAAAAAAAmvcFvMtO2D2XYci9ITRyvtPjTb1KnXW9AAAAAAAAAACz6G+9wxlVut10Ibg3xhmze0orOl9BPjcAAIA/AACAP5rRMrvSaNy7I3WDO5qqkjygxCS9Gv12PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008000000000000007, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFCAKZszhcUCUhpRSlIwBbJRL9YwBdJRHQKIklbSqlxh1fZQoaAZoCWgPQwhvDtdqDzNzQJSGlFKUaBVNEQFoFkdAoiSjYPGyX3V9lChoBmgJaA9DCCQMA5Zc93JAlIaUUpRoFUv1aBZHQKIk9n13+uN1fZQoaAZoCWgPQwin64muSwFwQJSGlFKUaBVNFgFoFkdAoiWHF72L53V9lChoBmgJaA9DCAcMkj4tTG5AlIaUUpRoFUv+aBZHQKIlrUzbeuV1fZQoaAZoCWgPQwikp8ghosBwQJSGlFKUaBVL72gWR0CiJdOkDZDidX2UKGgGaAloD0MIeZW1TTFGckCUhpRSlGgVTQMBaBZHQKI2UjesPrh1fZQoaAZoCWgPQwiSJXMsL4twQJSGlFKUaBVNBAFoFkdAojZuzru6VnV9lChoBmgJaA9DCLSTwVFyy29AlIaUUpRoFUv/aBZHQKI2nc6eXiR1fZQoaAZoCWgPQwiZuFUQA69xQJSGlFKUaBVNBQFoFkdAojbEX531SXV9lChoBmgJaA9DCPt0PGagZnNAlIaUUpRoFUv4aBZHQKI2zUo8ZDR1fZQoaAZoCWgPQwiv6UFB6ZpxQJSGlFKUaBVNAwFoFkdAojdZ++dsi3V9lChoBmgJaA9DCDbM0HiiGXBAlIaUUpRoFUv/aBZHQKI3dTn7pFF1fZQoaAZoCWgPQwhwCisVVDxyQJSGlFKUaBVNAwFoFkdAojePtMPBi3V9lChoBmgJaA9DCJ8ih4ibDW5AlIaUUpRoFUv+aBZHQKI3rDk2gnN1fZQoaAZoCWgPQwiyDdyBug5uQJSGlFKUaBVL9GgWR0CiN98MEzO5dX2UKGgGaAloD0MI8MAAwkeJckCUhpRSlGgVS/poFkdAojgraCcwxnV9lChoBmgJaA9DCC6thsR9GHBAlIaUUpRoFU0VAWgWR0CiOEU0Nz8xdX2UKGgGaAloD0MIemzLgPMscUCUhpRSlGgVS/xoFkdAojiJDgIhQnV9lChoBmgJaA9DCLBVgsUhjnFAlIaUUpRoFUv1aBZHQKI4oifxtpF1fZQoaAZoCWgPQwjMJVXbDYlyQJSGlFKUaBVNAgFoFkdAojiv6InBtXV9lChoBmgJaA9DCD6yuWoeimFAlIaUUpRoFU3oA2gWR0CiONg7YChfdX2UKGgGaAloD0MIO8PUlnqIc0CUhpRSlGgVTQEBaBZHQKI5iixFAml1fZQoaAZoCWgPQwj11yssuAJuQJSGlFKUaBVL92gWR0CiOZ2OZLIxdX2UKGgGaAloD0MIglSKHY01cUCUhpRSlGgVS/RoFkdAojm6Rhc7hnV9lChoBmgJaA9DCGeasP2kCXFAlIaUUpRoFU0fAWgWR0CiOdSw4bS7dX2UKGgGaAloD0MItU/HY0YNcUCUhpRSlGgVTQUBaBZHQKI59CKJl8R1fZQoaAZoCWgPQwhOK4VALjBzQJSGlFKUaBVL8GgWR0CiOjsJx//edX2UKGgGaAloD0MIn8coz/yvckCUhpRSlGgVS99oFkdAojqDojfNzXV9lChoBmgJaA9DCOTXD7FBPW1AlIaUUpRoFU0DAWgWR0CiOpEJ0GNadX2UKGgGaAloD0MIKEnXTD70ckCUhpRSlGgVTQsBaBZHQKI62rxy4nZ1fZQoaAZoCWgPQwjYZI16CHxwQJSGlFKUaBVNFwFoFkdAojrnSDyvtHV9lChoBmgJaA9DCLde04NCanBAlIaUUpRoFU0FAWgWR0CiO0KrR0EHdX2UKGgGaAloD0MIEvdY+hCQckCUhpRSlGgVTQQBaBZHQKI7WDbJwKl1fZQoaAZoCWgPQwhnDkktlC5xQJSGlFKUaBVL/mgWR0CiO4hfrrxBdX2UKGgGaAloD0MIrFPle0ZecECUhpRSlGgVS+ZoFkdAojuVhoduHnV9lChoBmgJaA9DCE1qaANwvHFAlIaUUpRoFUv+aBZHQKI7oT8HfMx1fZQoaAZoCWgPQwhExM2pZG5tQJSGlFKUaBVNBwFoFkdAojvCV0Lc9HV9lChoBmgJaA9DCHUF24in025AlIaUUpRoFUvgaBZHQKI8J+CK77N1fZQoaAZoCWgPQwiUhETaholyQJSGlFKUaBVL4GgWR0CiPDJrtVrAdX2UKGgGaAloD0MIqwZhbveQcECUhpRSlGgVS/JoFkdAojyQgaFVUHV9lChoBmgJaA9DCM3qHW4HSXJAlIaUUpRoFUvwaBZHQKI8pmOEM9d1fZQoaAZoCWgPQwiZYg6CTlpyQJSGlFKUaBVNFwFoFkdAojzaXKKYRnV9lChoBmgJaA9DCP1JfO7E4nNAlIaUUpRoFUv1aBZHQKI88iN83Mp1fZQoaAZoCWgPQwj27SQifIFvQJSGlFKUaBVL82gWR0CiPT6BAfMfdX2UKGgGaAloD0MI6BGj51YWc0CUhpRSlGgVS/1oFkdAoj1Pv8ZUDXV9lChoBmgJaA9DCHhCrz8JJGxAlIaUUpRoFU0GAWgWR0CiPdgDRtxddX2UKGgGaAloD0MICTcZVUY4cECUhpRSlGgVS+hoFkdAoj3noX9BKXV9lChoBmgJaA9DCGkB2lazcXFAlIaUUpRoFUv3aBZHQKI+SjzI3it1fZQoaAZoCWgPQwimDBzQUr5vQJSGlFKUaBVNIgFoFkdAoj5rMV1wHnV9lChoBmgJaA9DCMbctYQ8K3FAlIaUUpRoFUv4aBZHQKI+lQKKHfx1fZQoaAZoCWgPQwgL1GLwsJFwQJSGlFKUaBVNBQFoFkdAoj7pOSGJvnV9lChoBmgJaA9DCKsgBrp2V3JAlIaUUpRoFU0AAWgWR0CiPw5nctXgdX2UKGgGaAloD0MIkgVM4FYUcUCUhpRSlGgVTQ8BaBZHQKI/97u2JBR1fZQoaAZoCWgPQwhCJEOOre9uQJSGlFKUaBVL62gWR0CiQAy/9Hc2dX2UKGgGaAloD0MIjV2ieit/ckCUhpRSlGgVTUwBaBZHQKJAD3Ux20R1fZQoaAZoCWgPQwgYIqev5yNxQJSGlFKUaBVNKgFoFkdAokCAaP0ZnHV9lChoBmgJaA9DCARWDi1yNHJAlIaUUpRoFU0DAWgWR0CiQRQnhKlIdX2UKGgGaAloD0MI0QfL2NCZb0CUhpRSlGgVS/ZoFkdAokFQQDmr83V9lChoBmgJaA9DCEijAicbyHFAlIaUUpRoFUv0aBZHQKJBZa24NI91fZQoaAZoCWgPQwhaKm9HeGBzQJSGlFKUaBVNKAFoFkdAokGayfL9uXV9lChoBmgJaA9DCGRd3EZDkXBAlIaUUpRoFU1JAWgWR0CiQdc580DVdX2UKGgGaAloD0MIqg1ORL9JcUCUhpRSlGgVTQIBaBZHQKJCT7pmmLt1fZQoaAZoCWgPQwjkuinlNepxQJSGlFKUaBVL9WgWR0CiQnltbcGkdX2UKGgGaAloD0MIa0Wb49xQc0CUhpRSlGgVTSIBaBZHQKJC1GR3eN11fZQoaAZoCWgPQwj2DOGYJdVxQJSGlFKUaBVNAAFoFkdAokL43aSLZXV9lChoBmgJaA9DCNkFg2tu3G9AlIaUUpRoFU0LAWgWR0CiQv7lA/s3dX2UKGgGaAloD0MIw5ygTQ77ckCUhpRSlGgVTQQBaBZHQKJDj93r2QJ1fZQoaAZoCWgPQwij5qvkY2BRQJSGlFKUaBVLsGgWR0CiQ5XyI55rdX2UKGgGaAloD0MIkPY/wJrrcUCUhpRSlGgVTRUBaBZHQKJDsiL2pQ11fZQoaAZoCWgPQwhtA3egDoxwQJSGlFKUaBVL7mgWR0CiRC+z+m3wdX2UKGgGaAloD0MIe00PCop4ckCUhpRSlGgVTQIBaBZHQKJEeAYpDu11fZQoaAZoCWgPQwiHwJFAA7RvQJSGlFKUaBVNCAFoFkdAokSlMfzSTnV9lChoBmgJaA9DCGSvd3+8OnJAlIaUUpRoFUvuaBZHQKJFQmCROlB1fZQoaAZoCWgPQwhZpIl3gMlvQJSGlFKUaBVNAAFoFkdAokX400m+kHV9lChoBmgJaA9DCFYsflPY3m5AlIaUUpRoFU0DAWgWR0CiRkVJ+UhWdX2UKGgGaAloD0MIGM+gof+ucUCUhpRSlGgVTRsBaBZHQKJGb127nPp1fZQoaAZoCWgPQwgFxY8xN7ZxQJSGlFKUaBVL2mgWR0CiRnh7u2JBdX2UKGgGaAloD0MI8wLso5PLcECUhpRSlGgVTQQBaBZHQKJHGUgSvkl1fZQoaAZoCWgPQwjAety3WhFxQJSGlFKUaBVL/2gWR0CiR2oNutOmdX2UKGgGaAloD0MIh4ibU4mKcUCUhpRSlGgVTUEBaBZHQKJHjtVJcxF1fZQoaAZoCWgPQwjNr+YAwYdUQJSGlFKUaBVLu2gWR0CiR5Om78NydX2UKGgGaAloD0MIkPmAQCcgckCUhpRSlGgVS/NoFkdAokfQNsnAqXV9lChoBmgJaA9DCJwzorS3YW1AlIaUUpRoFU0eAWgWR0CiR/EnLJS0dX2UKGgGaAloD0MIGCe+2lEqb0CUhpRSlGgVS/9oFkdAokgPpUxVQ3V9lChoBmgJaA9DCDlE3JxK7m9AlIaUUpRoFU0LAWgWR0CiSB8OCoS+dX2UKGgGaAloD0MIe7/Rjpv2cUCUhpRSlGgVS95oFkdAokhH752yLXV9lChoBmgJaA9DCNS3zOmyjnNAlIaUUpRoFU1DAWgWR0CiSFNQsPJ8dX2UKGgGaAloD0MIcsCuJg+ocECUhpRSlGgVS/hoFkdAokhxxo7FKnV9lChoBmgJaA9DCFhWmpQC5XJAlIaUUpRoFUv1aBZHQKJI1N1QqI91fZQoaAZoCWgPQwj1oQvqG3ZxQJSGlFKUaBVL2WgWR0CiSOX6InBtdX2UKGgGaAloD0MI/DiaIytcUECUhpRSlGgVS6loFkdAokj+qcVgyHV9lChoBmgJaA9DCBgl6C90AXBAlIaUUpRoFUvzaBZHQKJJU/47A+J1fZQoaAZoCWgPQwjpYWh18o5wQJSGlFKUaBVL8mgWR0CiSWky+HrRdX2UKGgGaAloD0MI41C/C1uhR0CUhpRSlGgVS79oFkdAokmc0+C9RXV9lChoBmgJaA9DCNpXHqQnT29AlIaUUpRoFU0yAWgWR0CiSjjhtLtedX2UKGgGaAloD0MIStI1k6/dc0CUhpRSlGgVS/1oFkdAokpGplz2e3V9lChoBmgJaA9DCC9q96sAy29AlIaUUpRoFUvwaBZHQKJKe6U7jkx1fZQoaAZoCWgPQwjBrbt5atxwQJSGlFKUaBVL8WgWR0CiSsAFotcwdX2UKGgGaAloD0MI5sqg2iClcECUhpRSlGgVS/RoFkdAokrbfP5YYHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 336, "n_steps": 1500, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}