File size: 2,324 Bytes
8ffd1dd 782c956 8ffd1dd 782c956 8ffd1dd 782c956 8ffd1dd 782c956 8ffd1dd 782c956 8ffd1dd 782c956 8ffd1dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
language:
- ru
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- bond005/sberdevices_golos_10h_crowd
metrics:
- wer
model-index:
- name: my_model - Val123val
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Sberdevices_golos_10h_crowd
type: bond005/sberdevices_golos_10h_crowd
args: 'split: test'
metrics:
- name: Wer
type: wer
value: 42.241139818232334
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_model - Val123val
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Sberdevices_golos_10h_crowd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1761
- Wer: 42.2411
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1521 | 0.91 | 500 | 0.1824 | 29.3408 |
| 0.0824 | 1.82 | 1000 | 0.1702 | 27.5291 |
| 0.0304 | 2.73 | 1500 | 0.1726 | 45.1046 |
| 0.0114 | 3.64 | 2000 | 0.1704 | 40.1238 |
| 0.0039 | 4.55 | 2500 | 0.1692 | 32.1903 |
| 0.0013 | 5.45 | 3000 | 0.1704 | 34.0298 |
| 0.0029 | 6.36 | 3500 | 0.1712 | 39.8976 |
| 0.0007 | 7.27 | 4000 | 0.1738 | 39.4273 |
| 0.0006 | 8.18 | 4500 | 0.1755 | 41.0664 |
| 0.0005 | 9.09 | 5000 | 0.1761 | 42.2411 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cpu
- Datasets 2.16.0
- Tokenizers 0.15.0
|