File size: 3,312 Bytes
d2925bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- text2textgeneration
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-small-finetune-medicine-v4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-small-finetune-medicine-v4
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7404
- Rouge1: 17.0034
- Rouge2: 4.9383
- Rougel: 16.8615
- Rougelsum: 16.6931
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| No log | 1.0 | 5 | 2.8864 | 15.7685 | 5.117 | 15.7138 | 15.518 |
| No log | 2.0 | 10 | 2.8754 | 15.7702 | 5.117 | 15.6758 | 15.5641 |
| No log | 3.0 | 15 | 2.8556 | 15.9322 | 4.0564 | 15.9587 | 15.8195 |
| No log | 4.0 | 20 | 2.8469 | 16.4117 | 4.9383 | 16.3008 | 16.2258 |
| No log | 5.0 | 25 | 2.8380 | 17.2745 | 4.9383 | 17.2039 | 17.0175 |
| No log | 6.0 | 30 | 2.8276 | 16.8416 | 5.6437 | 16.737 | 16.5215 |
| No log | 7.0 | 35 | 2.8118 | 17.0703 | 4.9383 | 16.9715 | 16.7941 |
| No log | 8.0 | 40 | 2.8010 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 9.0 | 45 | 2.7898 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 10.0 | 50 | 2.7783 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 11.0 | 55 | 2.7694 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 12.0 | 60 | 2.7617 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 13.0 | 65 | 2.7546 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 14.0 | 70 | 2.7478 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 15.0 | 75 | 2.7437 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 16.0 | 80 | 2.7417 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 17.0 | 85 | 2.7416 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 18.0 | 90 | 2.7409 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 19.0 | 95 | 2.7405 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
| No log | 20.0 | 100 | 2.7404 | 17.0034 | 4.9383 | 16.8615 | 16.6931 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|