File size: 1,936 Bytes
48ae0f6 7016d9d 48ae0f6 7016d9d 48ae0f6 4d920f9 03a4c6a 48ae0f6 4d920f9 48ae0f6 4d920f9 48ae0f6 7016d9d 48ae0f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tamilmixsentiment
metrics:
- accuracy
model_index:
- name: tamil-sentiment-distilbert
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tamilmixsentiment
type: tamilmixsentiment
args: default
metric:
name: Accuracy
type: accuracy
value: 0.665
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tamil-sentiment-distilbert
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tamilmixsentiment dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0230
- Accuracy: 0.665
## Dataset Information
- text: Tamil-English code-mixed comment.
- label: list of the possible sentiments
- LABEL_0: "Positive",
- LABEL_1: "Negative",
- LABEL_2: "Mixed_feelings",
- LABEL_3: "unknown_state",
- LABEL_4: "not-Tamil"
## Intended uses & limitations
This model was just created for doing classification task on tamilmixsentiment dataset
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0442 | 1.0 | 250 | 0.9883 | 0.674 |
| 0.9227 | 2.0 | 500 | 0.9782 | 0.673 |
| 0.7591 | 3.0 | 750 | 1.0230 | 0.665 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|