--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: output results: [] --- # output This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2749 - Accuracy: 0.9364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2399 | 1.0 | 2500 | 0.2539 | 0.9037 | | 0.2454 | 2.0 | 5000 | 0.2753 | 0.9064 | | 0.2251 | 3.0 | 7500 | 0.2436 | 0.9167 | | 0.1996 | 4.0 | 10000 | 0.2271 | 0.9246 | | 0.1845 | 5.0 | 12500 | 0.2116 | 0.9269 | | 0.205 | 6.0 | 15000 | 0.1946 | 0.9312 | | 0.1352 | 7.0 | 17500 | 0.2233 | 0.9328 | | 0.1306 | 8.0 | 20000 | 0.2257 | 0.936 | | 0.0849 | 9.0 | 22500 | 0.2582 | 0.9372 | | 0.0609 | 10.0 | 25000 | 0.2749 | 0.9364 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3