Venkatesh4342
commited on
Commit
•
8884f5c
1
Parent(s):
04ba354
End of training
Browse files- README.md +95 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: ntu-spml/distilhubert
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- Emo-Codec/CREMA-D_synth
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
model-index:
|
14 |
+
- name: distilhubert-tone-classification
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Audio Classification
|
18 |
+
type: audio-classification
|
19 |
+
dataset:
|
20 |
+
name: CREMA-D
|
21 |
+
type: Emo-Codec/CREMA-D_synth
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.6809651474530831
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.6795129218164245
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.6809651474530831
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.6750238551197275
|
35 |
+
---
|
36 |
+
|
37 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
+
should probably proofread and complete it, then remove this comment. -->
|
39 |
+
|
40 |
+
# distilhubert-tone-classification
|
41 |
+
|
42 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the CREMA-D dataset.
|
43 |
+
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 1.1796
|
45 |
+
- Accuracy: 0.6810
|
46 |
+
- Precision: 0.6795
|
47 |
+
- Recall: 0.6810
|
48 |
+
- F1: 0.6750
|
49 |
+
|
50 |
+
## Model description
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Intended uses & limitations
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Training and evaluation data
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training procedure
|
63 |
+
|
64 |
+
### Training hyperparameters
|
65 |
+
|
66 |
+
The following hyperparameters were used during training:
|
67 |
+
- learning_rate: 5e-05
|
68 |
+
- train_batch_size: 16
|
69 |
+
- eval_batch_size: 16
|
70 |
+
- seed: 42
|
71 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
+
- lr_scheduler_type: linear
|
73 |
+
- lr_scheduler_warmup_ratio: 0.1
|
74 |
+
- num_epochs: 8
|
75 |
+
|
76 |
+
### Training results
|
77 |
+
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
79 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
80 |
+
| 1.3122 | 1.0 | 442 | 1.1656 | 0.5737 | 0.5887 | 0.5737 | 0.5679 |
|
81 |
+
| 1.0131 | 2.0 | 884 | 0.9625 | 0.6461 | 0.6572 | 0.6461 | 0.6399 |
|
82 |
+
| 0.7817 | 3.0 | 1326 | 1.0005 | 0.6381 | 0.6506 | 0.6381 | 0.6249 |
|
83 |
+
| 0.6087 | 4.0 | 1768 | 0.9428 | 0.6649 | 0.6572 | 0.6649 | 0.6515 |
|
84 |
+
| 0.4604 | 5.0 | 2210 | 1.0250 | 0.6622 | 0.6710 | 0.6622 | 0.6545 |
|
85 |
+
| 0.3164 | 6.0 | 2652 | 1.0814 | 0.6783 | 0.6821 | 0.6783 | 0.6656 |
|
86 |
+
| 0.2127 | 7.0 | 3094 | 1.1286 | 0.6971 | 0.6991 | 0.6971 | 0.6909 |
|
87 |
+
| 0.1224 | 8.0 | 3536 | 1.1796 | 0.6810 | 0.6795 | 0.6810 | 0.6750 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.42.4
|
93 |
+
- Pytorch 2.3.1+cu121
|
94 |
+
- Datasets 2.21.0
|
95 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94767616
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9eb7e84add2ed67e9b221446240383f6386281e6a79a9167c4728cc49fc9e536
|
3 |
size 94767616
|