pegasus-samsum / README.md
Venkatesh4342's picture
End of training
73eea7c
|
raw
history blame
2.25 kB
metadata
base_model: google/pegasus-cnn_dailymail
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: pegasus-samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: validation
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.4616

pegasus-samsum

This model is a fine-tuned version of google/pegasus-cnn_dailymail on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3665
  • Rouge1: 0.4616
  • Rouge2: 0.2275
  • Rougel: 0.3725
  • Rougelsum: 0.3738
  • Gen Len: 35.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.750420024069848e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.2186 0.87 100 1.7567 0.3571 0.1437 0.2779 0.2797 46.7733
1.7368 1.74 200 1.4933 0.4347 0.2053 0.3459 0.3461 35.4533
1.6744 2.61 300 1.4059 0.4547 0.2179 0.3629 0.3634 35.68
1.5978 3.47 400 1.3665 0.4616 0.2275 0.3725 0.3738 35.6667

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3