--- base_model: google/pegasus-cnn_dailymail tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: pegasus-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 0.4616 --- # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3665 - Rouge1: 0.4616 - Rouge2: 0.2275 - Rougel: 0.3725 - Rougelsum: 0.3738 - Gen Len: 35.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.750420024069848e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.2186 | 0.87 | 100 | 1.7567 | 0.3571 | 0.1437 | 0.2779 | 0.2797 | 46.7733 | | 1.7368 | 1.74 | 200 | 1.4933 | 0.4347 | 0.2053 | 0.3459 | 0.3461 | 35.4533 | | 1.6744 | 2.61 | 300 | 1.4059 | 0.4547 | 0.2179 | 0.3629 | 0.3634 | 35.68 | | 1.5978 | 3.47 | 400 | 1.3665 | 0.4616 | 0.2275 | 0.3725 | 0.3738 | 35.6667 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3