File size: 2,017 Bytes
d5c5b46 84aa459 d5c5b46 84aa459 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: facebook/bart-base
metrics:
- rouge
model-index:
- name: bart-base-finetuned-multinews
results: []
pipeline_tag: summarization
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-multinews
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4152
- Rouge1: 14.6798
- Rouge2: 5.2044
- Rougel: 11.2346
- Rougelsum: 12.9794
- Gen Len: 20.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.8162 | 1.0 | 506 | 2.4807 | 14.5888 | 4.9839 | 11.0896 | 12.9 | 20.0 |
| 2.6122 | 2.0 | 1012 | 2.4371 | 14.9075 | 5.3211 | 11.2711 | 13.1998 | 20.0 |
| 2.518 | 3.0 | 1518 | 2.4141 | 14.8607 | 5.2903 | 11.332 | 13.1363 | 20.0 |
| 2.4585 | 4.0 | 2024 | 2.4246 | 14.7346 | 5.2263 | 11.2281 | 13.0277 | 20.0 |
| 2.4206 | 5.0 | 2530 | 2.4152 | 14.6798 | 5.2044 | 11.2346 | 12.9794 | 20.0 |
### Framework versions
- Transformers 4.40.1
- Pytorch 1.13.1+cu117
- Datasets 2.19.0
- Tokenizers 0.19.1 |