File size: 2,017 Bytes
d5c5b46
 
 
 
 
 
 
 
84aa459
d5c5b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84aa459
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: facebook/bart-base
metrics:
- rouge
model-index:
- name: bart-base-finetuned-multinews
  results: []
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-finetuned-multinews

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4152
- Rouge1: 14.6798
- Rouge2: 5.2044
- Rougel: 11.2346
- Rougelsum: 12.9794
- Gen Len: 20.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.8162        | 1.0   | 506  | 2.4807          | 14.5888 | 4.9839 | 11.0896 | 12.9      | 20.0    |
| 2.6122        | 2.0   | 1012 | 2.4371          | 14.9075 | 5.3211 | 11.2711 | 13.1998   | 20.0    |
| 2.518         | 3.0   | 1518 | 2.4141          | 14.8607 | 5.2903 | 11.332  | 13.1363   | 20.0    |
| 2.4585        | 4.0   | 2024 | 2.4246          | 14.7346 | 5.2263 | 11.2281 | 13.0277   | 20.0    |
| 2.4206        | 5.0   | 2530 | 2.4152          | 14.6798 | 5.2044 | 11.2346 | 12.9794   | 20.0    |


### Framework versions

- Transformers 4.40.1
- Pytorch 1.13.1+cu117
- Datasets 2.19.0
- Tokenizers 0.19.1