--- library_name: transformers language: - ru - en --- # Релиз вихря 0.5 Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели Added a lot more data to sft, now json and multiturn work more stable on long context and hard prompts - [Google Colab](https://colab.research.google.com/drive/15O9LwZhVUa1LWhZa2UKr_B-KOKenJBvv#scrollTo=5EeNFU2-9ERi) - [GGUF](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4-GGUF) ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained("Vikhrmodels/it-5.2-fp16-cp", device_map="auto", attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("Vikhrmodels/it-5.2-fp16-cp") from transformers import AutoTokenizer, pipeline pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) prompts = [ "В чем разница между фруктом и овощем?", "Годы жизни колмагорова?"] def test_inference(prompt): prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True) print(prompt) outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097) return outputs[0]['generated_text'][len(prompt):].strip() for prompt in prompts: print(f" prompt:\n{prompt}") print(f" response:\n{test_inference(prompt)}") print("-"*50) ``` ``` @article{nikolich2024vikhr, title={Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian}, author={Aleksandr Nikolich and Konstantin Korolev and Artem Shelmanov}, journal={arXiv preprint arXiv:2405.13929}, year={2024}, url={https://arxiv.org/pdf/2405.13929} } ```