Ksenia Sycheva
commited on
Commit
•
ee7a752
1
Parent(s):
2cd7bfa
Add inference code
Browse files- inference.py +139 -0
inference.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchaudio
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from transformers import (
|
5 |
+
AutoTokenizer,
|
6 |
+
AutoModelForCausalLM,
|
7 |
+
)
|
8 |
+
|
9 |
+
from speechtokenizer import SpeechTokenizer
|
10 |
+
from audiotools import AudioSignal
|
11 |
+
|
12 |
+
|
13 |
+
def decode_tts(tokens, quantizer, n_codebooks, n_original_tokens, start_audio_token_id, end_audio_token_id):
|
14 |
+
# find start and end indices of audio tokens
|
15 |
+
start = torch.nonzero(tokens == start_audio_token_id)
|
16 |
+
end = torch.nonzero(tokens == end_audio_token_id)
|
17 |
+
|
18 |
+
start = start[0, -1] + 1 if len(start) else 0
|
19 |
+
end = end[0, -1] if len(end) else tokens.shape[-1]
|
20 |
+
|
21 |
+
# subtract length of original vocabulary -> tokens in range [0, 1024)
|
22 |
+
audio_tokens = tokens[start:end] % n_original_tokens
|
23 |
+
reminder = audio_tokens.shape[-1] % n_codebooks
|
24 |
+
|
25 |
+
if reminder:
|
26 |
+
# pad if last frame is incomplete
|
27 |
+
pad_tokens = torch.zeros(n_codebooks - reminder, device="cuda")
|
28 |
+
audio_tokens = torch.cat([audio_tokens, pad_tokens[reminder:n_codebooks]], dim=0)
|
29 |
+
|
30 |
+
transposed = audio_tokens.view(-1, n_codebooks).t()
|
31 |
+
codes = transposed.view(n_codebooks, 1, -1).to(device)
|
32 |
+
|
33 |
+
audio = quantizer.decode(codes).squeeze(0)
|
34 |
+
|
35 |
+
del tokens
|
36 |
+
del audio_tokens
|
37 |
+
torch.cuda.empty_cache()
|
38 |
+
|
39 |
+
return AudioSignal(audio.detach().cpu().numpy(), quantizer.sample_rate)
|
40 |
+
|
41 |
+
|
42 |
+
def infer_text_to_audio(text, model, tokenizer, quantizer, max_seq_length=1024, top_k=20):
|
43 |
+
text_tokenized = tokenizer(text, return_tensors="pt")
|
44 |
+
text_input_tokens = text_tokenized["input_ids"].to(device)
|
45 |
+
|
46 |
+
soa = tokenizer(start_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
|
47 |
+
eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
|
48 |
+
|
49 |
+
text_tokens = torch.cat([text_input_tokens, soa], dim=1)
|
50 |
+
attention_mask = torch.ones(text_tokens.size(), device=device)
|
51 |
+
|
52 |
+
output_audio_tokens = model.generate(
|
53 |
+
text_tokens,
|
54 |
+
attention_mask=attention_mask,
|
55 |
+
max_new_tokens=max_seq_length,
|
56 |
+
top_k=top_k,
|
57 |
+
do_sample=True,
|
58 |
+
temperature=0.8,
|
59 |
+
no_repeat_ngram_size=3,
|
60 |
+
)
|
61 |
+
|
62 |
+
audio_signal = decode_tts(output_audio_tokens[0], quantizer, 3, len(tokenizer) - codebook_size, soa, eoa)
|
63 |
+
|
64 |
+
return audio_signal
|
65 |
+
|
66 |
+
|
67 |
+
def infer_audio_to_text(audio_path, model, tokenizer, quantizer, max_seq_length=1024, top_k=20):
|
68 |
+
audio_data, sample_rate = torchaudio.load(audio_path)
|
69 |
+
|
70 |
+
audio = audio_data.view(1, 1, -1).float().to(device)
|
71 |
+
# bandwidth_id = torch.tensor([0])
|
72 |
+
|
73 |
+
codes = quantizer.encode(audio)
|
74 |
+
raw_audio_tokens = codes[:, :n_codebooks_asr] + len(tokenizer) - codebook_size
|
75 |
+
|
76 |
+
soa = tokenizer(start_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
|
77 |
+
eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
|
78 |
+
audio_tokens = torch.cat([soa, raw_audio_tokens.view(1, -1), eoa], dim=1)
|
79 |
+
tokens = torch.cat([audio_tokens], dim=1)
|
80 |
+
|
81 |
+
attention_mask = torch.ones(tokens.size(), device=device)
|
82 |
+
|
83 |
+
output_text_tokens = model.generate(
|
84 |
+
tokens,
|
85 |
+
attention_mask=attention_mask,
|
86 |
+
max_new_tokens=max_seq_length,
|
87 |
+
temperature=0.6,
|
88 |
+
top_p=0.9,
|
89 |
+
top_k=top_k,
|
90 |
+
no_repeat_ngram_size=4,
|
91 |
+
length_penalty=2.0,
|
92 |
+
repetition_penalty=1.5
|
93 |
+
)
|
94 |
+
|
95 |
+
output_text_tokens = output_text_tokens.cpu()[0]
|
96 |
+
output_text_tokens = output_text_tokens[output_text_tokens < tokenizer(start_audio_token)["input_ids"][-1]]
|
97 |
+
decoded_text = tokenizer.decode(output_text_tokens, skip_special_tokens=True)
|
98 |
+
|
99 |
+
return decoded_text
|
100 |
+
|
101 |
+
|
102 |
+
device = "cuda"
|
103 |
+
|
104 |
+
n_special_tokens = 3
|
105 |
+
n_codebooks_tts = 3
|
106 |
+
n_codebooks_asr = 1
|
107 |
+
|
108 |
+
start_audio_token = "<soa>"
|
109 |
+
end_audio_token = "<eoa>"
|
110 |
+
end_sequence_token = "<eos>"
|
111 |
+
|
112 |
+
base_model = "Vikhrmodels/salt-116k"
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model, cache_dir=".")
|
117 |
+
model = AutoModelForCausalLM.from_pretrained(
|
118 |
+
base_model,
|
119 |
+
cache_dir=".",
|
120 |
+
torch_dtype=torch.bfloat16,
|
121 |
+
attn_implementation="sdpa",
|
122 |
+
device_map={"": 0}
|
123 |
+
)
|
124 |
+
|
125 |
+
quantizer_speech = SpeechTokenizer.load_from_checkpoint("speechtokenizer/config.json",
|
126 |
+
"speechtokenizer/SpeechTokenizer.pt")
|
127 |
+
quantizer_speech = quantizer_speech.eval().to(device)
|
128 |
+
codebook_size = quantizer_speech.quantizer.bins
|
129 |
+
|
130 |
+
text = ("Say 'COUNT NUMBERS FROM ONE TO TEN' with a male speaker delivers a very monotone and "
|
131 |
+
"low-pitched speech with a moderate speed in a setting with almost no noise, "
|
132 |
+
"creating a clear and quiet recording.")
|
133 |
+
|
134 |
+
audio_signal = infer_text_to_audio(text, model, tokenizer, quantizer_speech, top_k=50)
|
135 |
+
audio_signal.write("output.wav")
|
136 |
+
|
137 |
+
audio_path = "./input.wav"
|
138 |
+
generated_text = infer_audio_to_text(audio_path, model, tokenizer, quantizer_speech)
|
139 |
+
print(generated_text)
|