File size: 1,279 Bytes
2765854
1bb3281
 
 
 
 
 
 
 
 
 
 
 
2684ef3
 
 
 
 
e027295
 
 
 
 
 
faa06a2
 
 
 
 
e027295
2684ef3
b172fe6
1bb3281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
license: apache-2.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
dataset: hahminlew/kream-product-blip-captions
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- stable-diffusion
- stable-diffusion-diffusers
inference: true
datasets:
- hahminlew/kream-product-blip-captions
language:
- en
pipeline_tag: text-to-image
widget:
- text: >-
    uter, The Nike x Balenciaga Down Jacket Black, a photography of a black down
    jacket with a logo on the chest.
  output:
    url: images/example_4nqjjbsno.png
- text: >-
    outer, Undermycar Dtrange Dead Starange Destroyed Bomber Obsidian - 23SS, a
    photography of a black jacket with a zipper on the front
  output:
    url: images/example_0xl5w1lxm.png

---


# Inference

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
pipe.to("cuda")
pipe.load_lora_weights("VikramSingh178/sdxl-lora-finetune-product-caption")

prompt = "outer, The Nike x Balenciaga Down Jacket Black, a photography of a black down jacket with a logo on the chest."

image = pipe(prompt, num_inference_steps=45, guidance_scale=7.5).images[0]
image.save("example.png")
```