End of training
Browse files
README.md
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
@@ -19,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -48,20 +49,22 @@ The following hyperparameters were used during training:
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
-
| No log | 1.0 | 55 | 0.
|
58 |
-
| No log | 2.0 | 110 | 0.
|
59 |
-
| No log | 3.0 | 165 | 0.
|
|
|
|
|
60 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
-
- Transformers 4.
|
65 |
- Pytorch 2.0.1+cu118
|
66 |
-
- Datasets 2.
|
67 |
- Tokenizers 0.13.3
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
base_model: microsoft/deberta-v3-small
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0636
|
24 |
+
- Precision: 0.6312
|
25 |
+
- Recall: 0.7311
|
26 |
+
- F1: 0.6775
|
27 |
+
- Accuracy: 0.9769
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 5
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 55 | 0.0843 | 0.4846 | 0.5294 | 0.5060 | 0.9683 |
|
59 |
+
| No log | 2.0 | 110 | 0.0697 | 0.5695 | 0.7115 | 0.6326 | 0.9729 |
|
60 |
+
| No log | 3.0 | 165 | 0.0652 | 0.6099 | 0.7423 | 0.6696 | 0.9754 |
|
61 |
+
| No log | 4.0 | 220 | 0.0636 | 0.6445 | 0.7185 | 0.6795 | 0.9772 |
|
62 |
+
| No log | 5.0 | 275 | 0.0636 | 0.6312 | 0.7311 | 0.6775 | 0.9769 |
|
63 |
|
64 |
|
65 |
### Framework versions
|
66 |
|
67 |
+
- Transformers 4.33.0
|
68 |
- Pytorch 2.0.1+cu118
|
69 |
+
- Datasets 2.14.4
|
70 |
- Tokenizers 0.13.3
|