--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DeBERTa-finetuned-ner-S800 results: [] --- # DeBERTa-finetuned-ner-S800 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0636 - Precision: 0.6312 - Recall: 0.7311 - F1: 0.6775 - Accuracy: 0.9769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 55 | 0.0843 | 0.4846 | 0.5294 | 0.5060 | 0.9683 | | No log | 2.0 | 110 | 0.0697 | 0.5695 | 0.7115 | 0.6326 | 0.9729 | | No log | 3.0 | 165 | 0.0652 | 0.6099 | 0.7423 | 0.6696 | 0.9754 | | No log | 4.0 | 220 | 0.0636 | 0.6445 | 0.7185 | 0.6795 | 0.9772 | | No log | 5.0 | 275 | 0.0636 | 0.6312 | 0.7311 | 0.6775 | 0.9769 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3