--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DeBERTa-finetuned-ner-S800 results: [] --- # DeBERTa-finetuned-ner-S800 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0667 - Precision: 0.6659 - Recall: 0.7619 - F1: 0.7106 - Accuracy: 0.9781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 55 | 0.0751 | 0.6379 | 0.6218 | 0.6298 | 0.9723 | | No log | 2.0 | 110 | 0.0675 | 0.6869 | 0.7465 | 0.7154 | 0.9772 | | No log | 3.0 | 165 | 0.0667 | 0.6659 | 0.7619 | 0.7106 | 0.9781 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3