ViktorDo commited on
Commit
432a22c
1 Parent(s): deb2090

End of training

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: DeBERTa-finetuned-ner-copious
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # DeBERTa-finetuned-ner-copious
20
+
21
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0499
24
+ - Precision: 0.7867
25
+ - Recall: 0.8333
26
+ - F1: 0.8094
27
+ - Accuracy: 0.9842
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 63 | 0.0632 | 0.6793 | 0.7383 | 0.7076 | 0.9789 |
59
+ | No log | 2.0 | 126 | 0.0507 | 0.7559 | 0.8320 | 0.7921 | 0.9837 |
60
+ | No log | 3.0 | 189 | 0.0517 | 0.7771 | 0.8306 | 0.8029 | 0.9840 |
61
+ | No log | 4.0 | 252 | 0.0517 | 0.7822 | 0.8457 | 0.8127 | 0.9839 |
62
+ | No log | 5.0 | 315 | 0.0499 | 0.7867 | 0.8333 | 0.8094 | 0.9842 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.33.2
68
+ - Pytorch 2.0.1+cu118
69
+ - Datasets 2.14.5
70
+ - Tokenizers 0.13.3