ViktorDo commited on
Commit
15e166b
1 Parent(s): ef19352

End of training

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: DistilBERT-finetuned-ner-copious
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # DistilBERT-finetuned-ner-copious
20
+
21
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0755
24
+ - Precision: 0.6056
25
+ - Recall: 0.6565
26
+ - F1: 0.6300
27
+ - Accuracy: 0.9752
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 63 | 0.1322 | 0.3129 | 0.2884 | 0.3002 | 0.9529 |
59
+ | No log | 2.0 | 126 | 0.0842 | 0.5190 | 0.5739 | 0.5451 | 0.9711 |
60
+ | No log | 3.0 | 189 | 0.0772 | 0.5765 | 0.6174 | 0.5962 | 0.9740 |
61
+ | No log | 4.0 | 252 | 0.0751 | 0.6035 | 0.6464 | 0.6242 | 0.9751 |
62
+ | No log | 5.0 | 315 | 0.0755 | 0.6056 | 0.6565 | 0.6300 | 0.9752 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.33.2
68
+ - Pytorch 2.0.1+cu118
69
+ - Datasets 2.14.5
70
+ - Tokenizers 0.13.3