LongVU_Qwen2_7B / cambrian_arch.py
jadechoghari's picture
add files - PR (with the other config PR)- check description
be195f0 verified
raw
history blame
76.1 kB
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import random
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
import torch.nn.functional as F
# define the constants
CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15
LOGDIR = "."
# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"
from .multimodal_encoder_builder import build_vision_tower_aux_list
from .multimodal_projector_builder import build_vision_projector
from .vision_sampler import VisionTokenSampler
IS_XLA_AVAILABLE = False
class CambrianMetaModel:
def __init__(self, config):
super(CambrianMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower_aux_list"):
projector_type = getattr(config, "mm_projector_type", "linear")
if projector_type == "sva":
vision_hidden_size = config.vision_hidden_size
num_query_group = config.num_query_group
query_num_list = config.query_num_list
connector_only = config.connector_only
connector_depth = config.connector_depth
self.vision_tower_aux_list = build_vision_tower_aux_list(
config, delay_load=True
)
self.mm_projector = nn.Sequential(
nn.Linear(vision_hidden_size * num_query_group, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size),
)
image_token_len = config.image_token_len
vision_tower_aux_token_len_list = (
self.config.mm_vision_tower_aux_token_len_list
)
cross_att_token_len_list = [
int(vision_tower_aux_token_len**0.5) // int(image_token_len**0.5)
for vision_tower_aux_token_len in vision_tower_aux_token_len_list
]
for aux_i, vision_tower_aux in enumerate(self.vision_tower_aux_list):
setattr(
self,
"mm_projector_aux_{}".format(aux_i),
nn.Sequential(
nn.Linear(vision_tower_aux.hidden_size, vision_hidden_size),
nn.GELU(),
nn.Linear(vision_hidden_size, vision_hidden_size),
nn.LayerNorm(vision_hidden_size),
),
)
for query_group_i in range(num_query_group):
cross_att_token_len_list = [
int(vision_tower_aux_token_len**0.5)
// int(query_num_list[query_group_i] ** 0.5)
for vision_tower_aux_token_len in vision_tower_aux_token_len_list
]
setattr(
self,
"vision_sampler_{}".format(query_group_i),
VisionTokenSampler(
vision_hidden_size,
vision_hidden_size,
[vision_hidden_size] * len(self.vision_tower_aux_list),
cross_att_token_len_list,
vision_hidden_size,
connector_depth,
),
)
if not connector_only:
num_of_vision_sampler_layers = (
config.num_of_vision_sampler_layers
) = config.num_of_vision_sampler_layers
config.start_of_vision_sampler_layers = (
config.start_of_vision_sampler_layers
)
config.stride_of_vision_sampler_layers = (
config.stride_of_vision_sampler_layers
)
cross_att_token_len_list = [
int(vision_tower_aux_token_len**0.5)
// int(image_token_len**0.5)
for vision_tower_aux_token_len in vision_tower_aux_token_len_list
]
self.vision_sampler_layers = nn.ModuleList(
[
VisionTokenSampler(
config.hidden_size,
vision_hidden_size,
[vision_hidden_size] * len(self.vision_tower_aux_list),
cross_att_token_len_list,
vision_hidden_size,
1,
)
for layer_idx in range(0, num_of_vision_sampler_layers)
]
)
self.vision_query = nn.Parameter(
torch.randn((num_query_group, vision_hidden_size), dtype=self.dtype)
)
self.image_newline = nn.Parameter(
torch.empty(config.hidden_size, dtype=self.dtype)
)
self.frame_pos = torch.stack(
[
1
/ torch.pow(
torch.tensor(10000),
torch.tensor(2 * (hid_j // 2) / config.hidden_size),
)
for hid_j in range(config.hidden_size)
]
)
else:
self.vision_tower_aux_list = build_vision_tower_aux_list(
config, delay_load=True
)
config.mm_hidden_size = sum(
[
vision_tower_aux.hidden_size
for vision_tower_aux in self.vision_tower_aux_list
]
)
self.mm_projector = build_vision_projector(config)
self.image_newline = nn.Parameter(
torch.empty(config.hidden_size, dtype=self.dtype)
)
def get_frame_pos(self, time_range):
frame_pos = self.frame_pos.reshape(1, -1) * time_range.reshape(-1, 1).to(
self.frame_pos.device
)
frame_pos[:, 0::2] = torch.sin(frame_pos[:, 0::2])
frame_pos[:, 1::2] = torch.cos(frame_pos[:, 0::2])
frame_pos = frame_pos.unsqueeze(1)
return frame_pos
# def get_vision_tower(self):
# vision_tower = getattr(self, 'vision_tower', None)
# if type(vision_tower) is list:
# vision_tower = vision_tower[0]
# return vision_tower
def get_vision_tower_aux_list(self):
vision_tower_aux_list = getattr(self, "vision_tower_aux_list", None)
return vision_tower_aux_list
def initialize_vision_modules(self, model_args, fsdp=None):
# vision_tower = model_args.vision_tower
num_query_group = model_args.num_query_group
query_num_list = model_args.query_num_list
vision_hidden_size = model_args.vision_hidden_size
vision_tower_aux_list = model_args.vision_tower_aux_list
vision_tower_aux_token_len_list = model_args.vision_tower_aux_token_len_list
image_token_len = model_args.image_token_len
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
connector_only = model_args.connector_only
connector_depth = model_args.connector_depth
# self.config.mm_vision_tower = vision_tower
self.config.image_token_len = image_token_len
self.config.num_query_group = num_query_group
self.config.query_num_list = query_num_list
assert num_query_group == len(query_num_list)
self.config.connector_depth = connector_depth
self.config.mm_vision_tower_aux_list = vision_tower_aux_list
self.config.mm_vision_tower_aux_token_len_list = vision_tower_aux_token_len_list
self.config.connector_only = connector_only
self.config.highres_connect = model_args.highres_connect
self.config.highres = model_args.highres
self.config.frame_pos = model_args.frame_pos
self.config.lowres_token = model_args.lowres_token
self.config.connect_layer = model_args.connect_layer
self.config.dino_threshold = getattr(model_args, "dino_threshold", 0.83)
self.config.drop_threshold = getattr(model_args, "drop_threshold", 0.6)
self.config.is_image_newline = getattr(model_args, "is_image_newline", True)
if self.get_vision_tower_aux_list() is None:
vision_tower_aux_list = build_vision_tower_aux_list(model_args)
if model_args.unfreeze_mm_vision_tower:
self.vision_tower_aux_list = nn.ModuleList(vision_tower_aux_list)
else:
self.vision_tower_aux_list = vision_tower_aux_list
else:
vision_tower_aux_list = self.vision_tower_aux_list
for vision_tower_aux in vision_tower_aux_list:
vision_tower_aux.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(
model_args, "mm_projector_type", "linear"
)
self.config.vision_hidden_size = vision_hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
if getattr(self, "mm_projector", None) is None:
if self.config.mm_projector_type == "sva":
self.mm_projector = nn.Sequential(
nn.Linear(
vision_hidden_size * num_query_group, self.config.hidden_size
),
nn.GELU(),
nn.Linear(self.config.hidden_size, self.config.hidden_size),
)
for aux_i, vision_tower_aux in enumerate(vision_tower_aux_list):
setattr(
self,
"mm_projector_aux_{}".format(aux_i),
nn.Sequential(
nn.Linear(vision_tower_aux.hidden_size, vision_hidden_size),
nn.GELU(),
nn.Linear(vision_hidden_size, vision_hidden_size),
nn.LayerNorm(vision_hidden_size),
),
)
# vision sampler for each group of query as the connector before the LLM
for query_group_i in range(num_query_group):
cross_att_token_len_list = [
int(vision_tower_aux_token_len**0.5)
// int(query_num_list[query_group_i] ** 0.5)
for vision_tower_aux_token_len in vision_tower_aux_token_len_list
]
setattr(
self,
"vision_sampler_{}".format(query_group_i),
VisionTokenSampler(
vision_hidden_size,
vision_hidden_size,
[vision_hidden_size] * len(vision_tower_aux_list),
cross_att_token_len_list,
vision_hidden_size,
connector_depth,
),
)
# sampler layers within LLM
if not connector_only:
num_of_vision_sampler_layers = (
self.config.num_of_vision_sampler_layers
) = model_args.num_of_vision_sampler_layers
self.config.start_of_vision_sampler_layers = (
model_args.start_of_vision_sampler_layers
)
self.config.stride_of_vision_sampler_layers = (
model_args.stride_of_vision_sampler_layers
)
cross_att_token_len_list = [
int(vision_tower_aux_token_len**0.5)
// int(image_token_len**0.5)
for vision_tower_aux_token_len in vision_tower_aux_token_len_list
]
self.vision_sampler_layers = nn.ModuleList(
[
VisionTokenSampler(
self.config.hidden_size,
vision_hidden_size,
[vision_hidden_size] * len(vision_tower_aux_list),
cross_att_token_len_list,
vision_hidden_size,
1,
)
for layer_idx in range(0, num_of_vision_sampler_layers)
]
)
vision_embed_std = 1 / torch.sqrt(
torch.tensor(vision_hidden_size, dtype=self.dtype)
)
self.vision_query = nn.Parameter(
torch.randn((num_query_group, vision_hidden_size), dtype=self.dtype)
* vision_embed_std
)
embed_std = 1 / torch.sqrt(
torch.tensor(self.config.hidden_size, dtype=self.dtype)
)
self.image_newline = nn.Parameter(
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
)
else:
self.config.mm_hidden_size = sum(
[
vision_tower_aux.hidden_size
for vision_tower_aux in vision_tower_aux_list
]
)
self.mm_projector = build_vision_projector(self.config)
embed_std = 1 / torch.sqrt(
torch.tensor(self.config.hidden_size, dtype=self.dtype)
)
self.image_newline = nn.Parameter(
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(
pretrain_mm_mlp_adapter, map_location="cpu"
)
def get_w(weights, keyword):
return {
k.split(keyword + ".")[1]: v
for k, v in weights.items()
if keyword + "." in k
}
self.mm_projector.load_state_dict(
get_w(mm_projector_weights, "mm_projector"), strict=True
)
if self.config.mm_projector_type == "sva":
for aux_i in range(len(vision_tower_aux_list)):
getattr(self, "mm_projector_aux_{}".format(aux_i)).load_state_dict(
get_w(
mm_projector_weights, "mm_projector_aux_{}".format(aux_i)
),
strict=True,
)
for query_group_i in range(num_query_group):
getattr(
self, "vision_sampler_{}".format(query_group_i)
).load_state_dict(
get_w(
mm_projector_weights,
"vision_sampler_{}".format(query_group_i),
),
strict=True,
)
if not connector_only:
self.vision_sampler_layers.load_state_dict(
get_w(mm_projector_weights, "vision_sampler_layers"),
strict=True,
)
self.vision_query.data = mm_projector_weights["model.vision_query"]
self.image_newline.data = mm_projector_weights["model.image_newline"]
def unmask_attention_mask(mask, original_size):
original_w, original_h = original_size
cur_h, cur_w = mask.shape[1:3]
original_aspect_ratio = original_w / original_h
current_aspect_ratio = cur_w / cur_h
if original_aspect_ratio > current_aspect_ratio:
scale_factor = cur_w / original_w
new_height = int(original_h * scale_factor)
padding = (cur_h - new_height) // 2
if padding > 0:
mask[:, :padding, :] = 0
mask[:, -padding:, :] = 0
return mask
else:
scale_factor = cur_h / original_h
new_width = int(original_w * scale_factor)
padding = (cur_w - new_width) // 2
if padding > 0:
mask[:, :, :padding] = 0
mask[:, :, -padding:] = 0
return mask
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
original_size (tuple): The original size of the image (height, width).
Returns:
torch.Tensor: The unpadded image tensor.
"""
original_width, original_height = original_size
current_height, current_width = tensor.shape[1:3]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding : current_height - padding, :]
# if 0 in unpadded_tensor.shape:
# print(f"scale_factor: {scale_factor}, new_height: {new_height}, padding: {padding}, original_width: {original_width}, original_height: {original_height}")
else:
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding : current_width - padding]
# if 0 in unpadded_tensor.shape:
# print(f"scale_factor: {scale_factor}, new_width: {new_width}, padding: {padding}, original_width: {original_width}, original_height: {original_height}")
return unpadded_tensor
class CambrianMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
# def get_vision_tower(self):
# return self.get_model().get_vision_tower()
def get_vision_tower_aux_list(self):
return self.get_model().get_vision_tower_aux_list()
def rearrange_vision_tower_features_train(
self,
vision_tower_aux_feature_list,
vision_tower_aux_attention_masks_list,
query_side_len,
):
vision_tower_aux_feature_rearranged_list = []
vision_tower_aux_attention_masks_rearranged_list = []
bs = vision_tower_aux_feature_list[0].shape[0]
for vision_tower_aux_feature, vision_tower_aux_attention_masks in zip(
vision_tower_aux_feature_list, vision_tower_aux_attention_masks_list
):
aux_height = aux_width = int(vision_tower_aux_feature.shape[1] ** 0.5)
assert (aux_height // query_side_len) * query_side_len == aux_height
reduce_factor = aux_height // query_side_len
vision_tower_aux_feature_rearranged = vision_tower_aux_feature.view(
bs, query_side_len, reduce_factor, query_side_len, reduce_factor, -1
)
vision_tower_aux_feature_rearranged = (
vision_tower_aux_feature_rearranged.permute(0, 1, 3, 2, 4, 5)
.contiguous()
.flatten(0, 2)
.flatten(1, 2)
)
vision_tower_aux_attention_masks_rearranged = (
vision_tower_aux_attention_masks.view(
bs * query_side_len * query_side_len, reduce_factor * reduce_factor
)
)
vision_tower_aux_feature_rearranged_list.append(
vision_tower_aux_feature_rearranged
)
vision_tower_aux_attention_masks_rearranged_list.append(
vision_tower_aux_attention_masks_rearranged
)
return (
vision_tower_aux_feature_rearranged_list,
vision_tower_aux_attention_masks_rearranged_list,
)
def rearrange_vision_tower_features_inference(
self, vision_tower_aux_feature_list, query_side_len, image_sizes, unpad=False
):
vision_tower_aux_feature_rearranged_list = []
vision_tower_aux_attention_masks_rearranged_list = []
bs = vision_tower_aux_feature_list[0].shape[0]
for vision_tower_aux_feature in vision_tower_aux_feature_list:
aux_height = aux_width = int(vision_tower_aux_feature.shape[1] ** 0.5)
assert (aux_height // query_side_len) * query_side_len == aux_height
reduce_factor = aux_height // query_side_len
vision_tower_aux_feature_rearranged = []
vision_tower_aux_attention_masks_rearranged = []
for batch_i in range(bs):
image_size = image_sizes[batch_i]
cur_vision_tower_aux_feature = vision_tower_aux_feature[batch_i]
cur_vision_tower_aux_attention_masks_rearranged = torch.ones(
(1, aux_height, aux_width),
dtype=torch.bool,
device=cur_vision_tower_aux_feature.device,
)
cur_vision_tower_aux_feature_rearranged = (
cur_vision_tower_aux_feature.view(
1,
query_side_len,
reduce_factor,
query_side_len,
reduce_factor,
-1,
)
)
cur_vision_tower_aux_feature_rearranged = (
cur_vision_tower_aux_feature_rearranged.permute(
0, 1, 3, 2, 4, 5
).contiguous()
)
if unpad:
cur_vision_tower_aux_feature_rearranged = unpad_image(
cur_vision_tower_aux_feature_rearranged, image_size
)
cur_vision_tower_aux_feature_rearranged = (
cur_vision_tower_aux_feature_rearranged.flatten(0, 2).flatten(1, 2)
) # query_side_len*query_side_len X reduce_factor*reduce_factor X C
cur_vision_tower_aux_attention_masks_rearranged = unmask_attention_mask(
cur_vision_tower_aux_attention_masks_rearranged, image_size
)
cur_vision_tower_aux_attention_masks_rearranged = (
cur_vision_tower_aux_attention_masks_rearranged.view(
1, query_side_len, reduce_factor, query_side_len, reduce_factor
)
.permute(0, 1, 3, 2, 4)
.contiguous()
)
if unpad:
cur_vision_tower_aux_attention_masks_rearranged = unpad_image(
cur_vision_tower_aux_attention_masks_rearranged, image_size
)
cur_vision_tower_aux_attention_masks_rearranged = (
cur_vision_tower_aux_attention_masks_rearranged.flatten(
0, 2
).flatten(1, 2)
)
cur_vision_tower_aux_attention_masks_rearranged[
cur_vision_tower_aux_attention_masks_rearranged.sum(-1) == 0
] = True
vision_tower_aux_feature_rearranged.append(
cur_vision_tower_aux_feature_rearranged
)
vision_tower_aux_attention_masks_rearranged.append(
cur_vision_tower_aux_attention_masks_rearranged
)
vision_tower_aux_feature_rearranged = torch.cat(
vision_tower_aux_feature_rearranged, 0
)
vision_tower_aux_attention_masks_rearranged = torch.cat(
vision_tower_aux_attention_masks_rearranged, 0
)
vision_tower_aux_feature_rearranged_list.append(
vision_tower_aux_feature_rearranged
)
vision_tower_aux_attention_masks_rearranged_list.append(
vision_tower_aux_attention_masks_rearranged
)
return (
vision_tower_aux_feature_rearranged_list,
vision_tower_aux_attention_masks_rearranged_list,
)
def encode_images(self, image_aux_list, encode_type=None):
vision_tower_aux_list = self.get_model().get_vision_tower_aux_list()
image_aux_features_list = []
chunk_size = 64
if encode_type == "dino":
image_aux = image_aux_list[-1]
vision_tower_aux = vision_tower_aux_list[-1]
if image_aux.shape[0] > chunk_size:
image_aux_features_chunks = []
for start_idx in range(0, image_aux.shape[0], chunk_size):
end_idx = min(start_idx + chunk_size, image_aux.shape[0])
chunk = image_aux[start_idx:end_idx]
image_aux_features_chunk = vision_tower_aux(chunk)
image_aux_features_chunks.append(image_aux_features_chunk)
image_aux_features = torch.cat(image_aux_features_chunks, dim=0)
else:
image_aux_features = vision_tower_aux(image_aux)
return image_aux_features
elif encode_type == "siglip":
image_aux = image_aux_list[0]
vision_tower_aux = vision_tower_aux_list[0]
if image_aux.shape[0] > chunk_size:
image_aux_features_chunks = []
for start_idx in range(0, image_aux.shape[0], chunk_size):
end_idx = min(start_idx + chunk_size, image_aux.shape[0])
chunk = image_aux[start_idx:end_idx]
image_aux_features_chunk = vision_tower_aux(chunk)
image_aux_features_chunks.append(image_aux_features_chunk)
image_aux_features = torch.cat(image_aux_features_chunks, dim=0)
else:
image_aux_features = vision_tower_aux(image_aux)
return image_aux_features
else:
for image_aux, vision_tower_aux in zip(
image_aux_list, vision_tower_aux_list
):
if image_aux.shape[0] > chunk_size:
image_aux_features_chunks = []
for start_idx in range(0, image_aux.shape[0], chunk_size):
end_idx = min(start_idx + chunk_size, image_aux.shape[0])
chunk = image_aux[start_idx:end_idx]
image_aux_features_chunk = vision_tower_aux(chunk)
image_aux_features_chunks.append(image_aux_features_chunk)
image_aux_features = torch.cat(image_aux_features_chunks, dim=0)
else:
image_aux_features = vision_tower_aux(image_aux)
image_aux_features_list.append(image_aux_features)
return image_aux_features_list
def select_frame(
self,
feature_list,
split_sizes,
input_ids,
new_image_aux_list,
image_sizes,
window_size=16,
threshold=0.83,
):
dino_features_batch = torch.split(feature_list, split_sizes, dim=0)
new_image_aux_batch_0 = torch.split(new_image_aux_list[0], split_sizes, dim=0)
new_image_aux_batch_1 = torch.split(new_image_aux_list[1], split_sizes, dim=0)
new_split_sizes = []
selected_frames_all_0 = []
selected_frames_all_1 = []
selected_frames_feature_all = []
selected_frame_indices_all = []
for i_batch, frame_features in enumerate(dino_features_batch):
try:
if "llama" in self.get_model().config.model_type:
text_len = torch.where(input_ids[i_batch] == 128002)[-1][0]
else:
text_len = torch.where(input_ids[i_batch] == 151643)[-1][0]
except:
text_len = len(input_ids[i_batch])
original_width, original_height = image_sizes[i_batch]
if getattr(self.get_model().config, "highres", False):
token_per_frame = self.get_model().config.lowres_token ** 2
else:
token_per_frame = self.get_model().config.image_token_len
# current_height, current_width = token_per_side, token_per_side
# original_aspect_ratio = original_width / original_height
# current_aspect_ratio = current_width / current_height
# if original_aspect_ratio > current_aspect_ratio:
# scale_factor = current_width / original_width
# new_height = int(original_height * scale_factor)
# padding = math.ceil((current_height - new_height) / 2.0)
# token_per_frame = (
# current_height - padding * 2
# ) * token_per_side + token_per_side
# else:
# scale_factor = current_height / original_height
# new_width = int(original_width * scale_factor)
# padding = math.ceil((current_width - new_width) / 2.0)
# token_per_frame = (current_width - padding * 2) * token_per_side + (
# current_width - padding * 2
# )
# token_per_frame = (
# token_per_side**2 if token_per_frame < 1 else token_per_frame
# )
max_num_frames = max(
1,
(
self.get_model().config.tokenizer_model_max_length
- text_len
- getattr(self.get_model().config, "inference_max_length", 16)
)
// token_per_frame,
)
if len(frame_features) < max_num_frames:
selected_frames_all_0.append(new_image_aux_batch_0[i_batch])
selected_frames_all_1.append(new_image_aux_batch_1[i_batch])
selected_frames_feature_all.append(frame_features)
new_split_sizes.append(len(frame_features))
selected_frame_indices_all.append(torch.arange(len(frame_features)))
continue
num_segments = len(frame_features) // window_size
if num_segments == 0:
query_feature = frame_features.flatten(1, 2)
query_feature = query_feature / torch.norm(
(query_feature), dim=1, keepdim=True
)
similarities = torch.mean(query_feature @ query_feature.T, dim=1)
similarities[len(frame_features) // 2] = 0
indices = torch.where(similarities < threshold)[0]
selected_frame_indices_all.append(indices)
selected_frames_all_0.append(new_image_aux_batch_0[i_batch][indices])
selected_frames_all_1.append(new_image_aux_batch_1[i_batch][indices])
selected_frames_feature_all.append(frame_features[indices])
new_split_sizes.append(len(indices))
continue
segments_frames_0 = []
segments_frames_1 = []
segments_features = []
for start_idx in range(0, len(frame_features), window_size):
end_idx = min(start_idx + window_size, len(frame_features))
segments_frames_0.append(
new_image_aux_batch_0[i_batch][start_idx:end_idx]
)
segments_frames_1.append(
new_image_aux_batch_1[i_batch][start_idx:end_idx]
)
segments_features.append(frame_features[start_idx:end_idx])
selected_frames_0 = []
selected_frames_1 = []
selected_features = []
selected_frame_indices = []
for i, segment in enumerate(segments_features):
query_feature = segment.flatten(1, 2)
query_feature = query_feature / torch.norm(
(query_feature), dim=1, keepdim=True
)
similarities = torch.mean(query_feature @ query_feature.T, dim=1)
similarities[len(segment) // 2] = 0
indices = torch.where(similarities < threshold)[0]
selected_frames_0.append(segments_frames_0[i][indices])
selected_frames_1.append(segments_frames_1[i][indices])
selected_features.append(segment[indices])
selected_frame_indices.extend(indices + i * window_size)
selected_frames_0 = torch.cat(selected_frames_0, dim=0)
selected_frames_1 = torch.cat(selected_frames_1, dim=0)
selected_features = torch.cat(selected_features, dim=0)
selected_frame_indices = torch.tensor(selected_frame_indices)
# ablation
max_num_frames = 400 # in case of OOM
if len(selected_frames_0) > max_num_frames:
interval = len(selected_frames_0) / float(max_num_frames)
indices = [int(interval * i) for i in range(max_num_frames)]
new_split_sizes.append(len(indices))
selected_frames_all_0.append(selected_frames_0[indices])
selected_frames_all_1.append(selected_frames_1[indices])
selected_frames_feature_all.append(selected_features[indices])
selected_frame_indices = selected_frame_indices[indices]
else:
new_split_sizes.append(len(selected_frames_0))
selected_frames_all_0.append(selected_frames_0)
selected_frames_all_1.append(selected_frames_1)
selected_frames_feature_all.append(selected_features)
selected_frame_indices_all.append(selected_frame_indices)
selected_frames_all_0 = torch.cat(selected_frames_all_0, dim=0)
selected_frames_all_1 = torch.cat(selected_frames_all_1, dim=0)
selected_frames_feature_all = torch.cat(selected_frames_feature_all, dim=0)
return (
selected_frames_feature_all,
new_split_sizes,
[selected_frames_all_0, selected_frames_all_1],
selected_frame_indices_all,
)
def prepare_inputs_labels_for_multimodal(
self,
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
image_aux_attention_masks_list=None,
image_sizes=None,
):
# vision_tower = self.get_vision_tower()
vision_tower_aux_list = self.get_model().get_vision_tower_aux_list()
if vision_tower_aux_list is None or images is None or input_ids.shape[1] == 1:
return (
input_ids,
position_ids,
attention_mask,
past_key_values,
None,
labels,
None,
None,
None,
None,
)
image_aux_list = images
split_sizes = None
if type(image_aux_list[0]) is list or image_aux_list[0].ndim == 5:
split_sizes_ori = [
1 if image.ndim == 3 else image.shape[0] for image in image_aux_list[0]
]
new_image_aux_list = []
for image_aux in image_aux_list:
if type(image_aux) is list:
image_aux = [
x.unsqueeze(0) if x.ndim == 3 else x for x in image_aux
]
concat_image_aux = torch.cat([image for image in image_aux], dim=0)
new_image_aux_list.append(concat_image_aux)
image_aux_features_dino = self.encode_images(
new_image_aux_list, encode_type="dino"
)
(
image_aux_features_dino,
split_sizes,
new_image_aux_list,
selected_frame_indices_all,
) = self.select_frame(
image_aux_features_dino,
split_sizes_ori,
input_ids,
new_image_aux_list,
image_sizes,
threshold=getattr(self.get_model().config, "dino_threshold", 0.83),
)
image_aux_features_siglip = self.encode_images(
new_image_aux_list, encode_type="siglip"
)
image_aux_features_list = [
image_aux_features_siglip,
image_aux_features_dino,
]
bs = image_aux_features_list[0].shape[0]
dtype = new_image_aux_list[0].dtype
frame_sizes = []
for i in range(len(image_sizes)):
for j in range(split_sizes[i]):
frame_sizes.append(image_sizes[i])
image_sizes = frame_sizes
else:
image_aux_features_list = self.encode_images(image_aux_list)
bs = image_aux_list[0].shape[0]
dtype = image_aux_list[0].dtype
image_token_len = self.get_model().config.image_token_len
query_num_list = self.get_model().config.query_num_list
final_height = final_width = int(image_token_len**0.5)
final_image_features_list = []
final_image_features_down_list = []
# only needed for sva
vision_tower_aux_feature_list_final = None
vision_tower_aux_attention_masks_list_final = None
global_context_feature_final = None
if self.get_model().config.mm_projector_type == "sva":
vision_tower_aux_feature_list = []
vision_tower_aux_attention_masks_list = []
# get vision tokens from each vision tower
for aux_i in range(len(vision_tower_aux_list)):
image_aux_features = image_aux_features_list[aux_i]
image_aux_features = getattr(
self.get_model(), "mm_projector_aux_{}".format(aux_i)
)(image_aux_features).to(dtype)
if aux_i == 0:
global_context_feature = image_aux_features.mean(1).view(
bs, 1, 1, -1
)
vision_tower_aux_feature_list.append(image_aux_features)
input_mix_res = True
input_high_res = True
# perform vision sampling for each query group
for query_group_i, query_num in enumerate(query_num_list):
query_features_i = (
self.get_model()
.vision_query[query_group_i, :]
.view(1, 1, 1, -1)
.expand(bs, query_num, -1, -1)
)
global_context_feature_i = global_context_feature.expand(
-1, query_num, 1, -1
).flatten(0, 1)
query_side_len = int(query_num**0.5)
if IS_XLA_AVAILABLE:
(
vision_tower_aux_feature_list_i,
vision_tower_aux_attention_masks_list_i,
) = self.rearrange_vision_tower_features_train(
vision_tower_aux_feature_list,
image_aux_attention_masks_list,
query_side_len,
)
else:
(
vision_tower_aux_feature_list_i,
vision_tower_aux_attention_masks_list_i,
) = self.rearrange_vision_tower_features_inference(
vision_tower_aux_feature_list, query_side_len, image_sizes
)
query_features_i = getattr(
self.get_model(), "vision_sampler_{}".format(query_group_i)
)(
query_features_i.flatten(0, 1),
global_context_feature_i,
*vision_tower_aux_feature_list_i,
*vision_tower_aux_attention_masks_list_i,
)
query_features_i = query_features_i.view(bs, query_num, -1)
if split_sizes is not None:
try:
if "llama" in self.get_model().config.model_type:
text_len = torch.where(input_ids[0] == 128002)[-1][0]
else:
text_len = torch.where(input_ids[0] == 151643)[-1][0]
except:
text_len = len(input_ids[0])
max_visual_len = (
self.get_model().config.tokenizer_model_max_length
- text_len
- getattr(self.get_model().config, "inference_max_length", 16)
)
max_num_frames = max(
1,
math.floor(max_visual_len // (final_height * final_width)),
)
max_num_frames_low = max(
1,
math.floor(
max_visual_len
// (self.get_model().config.lowres_token ** 2)
),
)
if split_sizes[0] < max_num_frames:
input_mix_res = False
elif split_sizes[0] > max_num_frames_low:
input_mix_res = False
input_high_res = False
# input_mix_res = False # ablation
if (getattr(self.config, "highres", False)) and input_mix_res:
_query_features_i = (
query_features_i.permute(0, 2, 1)
.contiguous()
.view(bs, -1, query_side_len, query_side_len)
)
_query_features_i = F.interpolate(
_query_features_i.float(),
size=(
self.get_model().config.lowres_token,
self.get_model().config.lowres_token,
),
mode="bilinear",
align_corners=False,
).to(dtype=query_features_i.dtype)
_query_features_i = (
_query_features_i.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
)
final_image_features_down_list.append(_query_features_i)
# interpolate to the final target size
if query_side_len != final_height:
query_features_i = (
query_features_i.permute(0, 2, 1)
.contiguous()
.view(bs, -1, query_side_len, query_side_len)
)
if input_high_res:
query_features_i = F.interpolate(
query_features_i.float(),
size=(final_height, final_width),
mode="bilinear",
align_corners=False,
).to(dtype=query_features_i.dtype)
else:
query_features_i = F.interpolate(
query_features_i.float(),
size=(8, 8),
mode="bilinear",
align_corners=False,
).to(dtype=query_features_i.dtype)
query_features_i = (
query_features_i.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
)
final_image_features_list.append(query_features_i)
if IS_XLA_AVAILABLE:
(
vision_tower_aux_feature_list_final,
vision_tower_aux_attention_masks_list_final,
) = self.rearrange_vision_tower_features_train(
vision_tower_aux_feature_list,
image_aux_attention_masks_list,
final_height,
)
global_context_feature_final = global_context_feature.expand(
-1, final_height * final_width, 1, -1
).flatten(0, 1)
else:
final_image_features_list = image_aux_features_list
image_features = torch.cat(final_image_features_list, -1)
image_features = self.get_model().mm_projector(image_features).to(dtype)
if (getattr(self.config, "highres", False)) and input_mix_res:
image_features_down = torch.cat(final_image_features_down_list, -1)
image_features_down = (
self.get_model().mm_projector(image_features_down).to(dtype)
)
if IS_XLA_AVAILABLE:
image_features = image_features.view(
image_features.shape[0], final_height, final_width, -1
)
image_features = torch.cat(
(
image_features,
self.model.image_newline[None, None, None, :].expand(
image_features.shape[0], final_height, 1, -1
),
),
dim=2,
)
image_features = image_features.flatten(1, 2)
final_size = [(final_height, final_width)] * bs
else:
image_features = image_features.view(bs, final_height, final_width, -1)
if (getattr(self.config, "highres", False)) and input_mix_res:
image_features_down = image_features_down.view(
bs,
self.get_model().config.lowres_token,
self.get_model().config.lowres_token,
-1,
)
image_features_unpadded = []
image_features_downsample = []
final_size = []
if self.get_model().config.mm_projector_type == "sva":
(
vision_tower_aux_feature_list_final,
vision_tower_aux_attention_masks_list_final,
) = self.rearrange_vision_tower_features_inference(
vision_tower_aux_feature_list, final_height, image_sizes, unpad=True
)
global_context_feature_final = []
for batch_i in range(bs):
cur_image_feature = image_features[batch_i]
image_size = image_sizes[batch_i]
cur_image_feature = unpad_image(
cur_image_feature.unsqueeze(0), image_size
)
cur_h, cur_w = cur_image_feature.shape[1:3]
try: # fix bug for some invalid image
cur_image_feature = cur_image_feature.view(1, cur_h, cur_w, -1)
final_size.append((cur_h, cur_w))
except:
# print(f"invalid after unpad {image_features[batch_i].shape}, {image_sizes[batch_i]}", flush=True)
cur_image_feature = image_features[batch_i].unsqueeze(0)
image_size = image_sizes[batch_i]
cur_h, cur_w = cur_image_feature.shape[1:3]
cur_image_feature = cur_image_feature.view(1, cur_h, cur_w, -1)
final_size.append((cur_h, cur_w))
if (getattr(self.config, "highres", False)) and input_mix_res:
cur_image_feature_down = unpad_image(
image_features_down[batch_i].unsqueeze(0),
(
int(
image_size[0]
/ (
image_token_len**0.5
/ self.get_model().config.lowres_token
)
),
int(
image_size[1]
/ (
image_token_len**0.5
/ self.get_model().config.lowres_token
)
),
),
)
_cur_h, _cur_w = cur_image_feature_down.shape[1:3]
try: # fix bug for some invalid image
cur_image_feature_down = cur_image_feature_down.view(
1, _cur_h, _cur_w, -1
)
except:
print("invalid after unpad", flush=True)
cur_image_feature_down = image_features_down[batch_i].unsqueeze(
0
)
_cur_h, _cur_w = cur_image_feature_down.shape[1:3]
cur_image_feature_down = cur_image_feature_down.view(
1, _cur_h, _cur_w, -1
)
cur_image_feature_down = torch.cat(
(
cur_image_feature_down,
self.model.image_newline.view(1, 1, 1, -1)
.expand(1, _cur_h, 1, -1)
.to(cur_image_feature_down.device),
),
dim=2,
).flatten(1, 2)
if split_sizes is None and getattr(self.config, "frame_pos", False):
frame_pos = (
self.get_model()
.get_frame_pos(torch.arange(1))
.to(cur_image_feature_down.device)
.to(cur_image_feature_down.dtype)
)
cur_image_feature_down += frame_pos
image_features_downsample.append(cur_image_feature_down.squeeze(0))
cur_image_feature = torch.cat(
(
cur_image_feature,
self.model.image_newline.view(1, 1, 1, -1)
.expand(1, cur_h, 1, -1)
.to(cur_image_feature.device),
),
dim=2,
)
if split_sizes is None and getattr(self.config, "frame_pos", False):
frame_pos = (
self.get_model()
.get_frame_pos(torch.arange(1))
.to(cur_image_feature.device)
.to(cur_image_feature.dtype)
)
cur_image_feature += frame_pos
cur_image_feature = cur_image_feature.flatten(1, 2)
image_features_unpadded.append(cur_image_feature.squeeze(0))
if self.get_model().config.mm_projector_type == "sva":
cur_global_context_feature = global_context_feature[batch_i].expand(
cur_h * cur_w, 1, -1
)
global_context_feature_final.append(cur_global_context_feature)
if self.get_model().config.mm_projector_type == "sva":
global_context_feature_final = torch.cat(
global_context_feature_final, 0
)
if (getattr(self.config, "highres", False)) and input_mix_res:
image_features = image_features_downsample
else:
image_features = image_features_unpadded
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
self.config, "mm_use_im_start_end", False
):
raise NotImplementedError
split_image_features_unpadded = None
frame_split_sizes = None
if split_sizes is not None:
split_image_features = []
split_image_features_unpadded = (
[]
if (getattr(self.config, "highres", False)) and input_mix_res
else None
)
start_idx = 0
for split_batch_idx, split_size in enumerate(split_sizes):
if isinstance(image_features[start_idx : start_idx + split_size], list):
if getattr(self.config, "frame_pos", False):
frame_feature = torch.cat(
image_features[start_idx : start_idx + split_size], dim=0
).reshape(split_size, -1, image_features[0].shape[-1])
frame_pos = (
self.get_model()
.get_frame_pos(selected_frame_indices_all[split_batch_idx])
.to(frame_feature.device)
.to(frame_feature.dtype)
)
frame_feature += frame_pos
split_image_features.append(
frame_feature.reshape(-1, image_features[0].shape[-1])
)
else:
split_image_features.append(
torch.cat(
image_features[start_idx : start_idx + split_size],
dim=0,
)
)
if (getattr(self.config, "highres", False)) and input_mix_res:
if getattr(self.config, "frame_pos", False):
frame_feature = torch.cat(
image_features_unpadded[
start_idx : start_idx + split_size
],
dim=0,
).reshape(split_size, -1, image_features[0].shape[-1])
frame_pos = (
self.get_model()
.get_frame_pos(
selected_frame_indices_all[split_batch_idx]
)
.to(frame_feature.device)
.to(frame_feature.dtype)
)
frame_feature += frame_pos
split_image_features_unpadded.append(
frame_feature.reshape(-1, image_features[0].shape[-1])
)
else:
split_image_features_unpadded.append(
torch.cat(
image_features_unpadded[
start_idx : start_idx + split_size
],
dim=0,
)
)
else:
if getattr(self.config, "frame_pos", False):
frame_feature = image_features[
start_idx : start_idx + split_size
].reshape(split_size, -1, image_features[0].shape[-1])
frame_pos = (
self.get_model()
.get_frame_pos(selected_frame_indices_all[split_batch_idx])
.to(frame_feature.device)
.to(frame_feature.dtype)
)
frame_feature += frame_pos
split_image_features.append(
frame_feature.reshape(-1, image_features[0].shape[-1])
)
else:
split_image_features.append(
image_features[start_idx : start_idx + split_size]
)
if (getattr(self.config, "highres", False)) and input_mix_res:
if getattr(self.config, "frame_pos", False):
frame_feature = image_features_unpadded[
start_idx : start_idx + split_size
]
frame_pos = (
self.get_model()
.get_frame_pos(
selected_frame_indices_all[split_batch_idx]
)
.to(frame_feature.device)
.to(frame_feature.dtype)
)
frame_feature += frame_pos
split_image_features_unpadded.append(
frame_feature.reshape(-1, image_features[0].shape[-1])
)
else:
split_image_features_unpadded.append(
image_features_unpadded[
start_idx : start_idx + split_size
]
)
start_idx += split_size
image_features = split_image_features
frame_split_sizes = split_sizes
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- FIXME
_input_ids = input_ids
attention_mask = attention_mask | (input_ids == IMAGE_TOKEN_INDEX)
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_input_embeds = []
new_labels = []
image_token_indices_batch = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat(
[cur_input_embeds_1, cur_image_features[0:0]], dim=0
)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = (
[-1]
+ torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
+ [cur_input_ids.shape[0]]
)
image_token_indices_batch.append(
torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()[0]
)
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(
cur_input_ids[
image_token_indices[i] + 1 : image_token_indices[i + 1]
]
)
cur_labels_noim.append(
cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]
)
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(
torch.cat(cur_input_ids_noim)
)
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
text_len = sum([x.shape[0] for x in cur_input_embeds_no_im])
visual_len = len(image_features[cur_image_idx])
max_visual_len = (
self.get_model().config.tokenizer_model_max_length
- getattr(self.get_model().config, "inference_max_length", 16)
- text_len
)
mix_token = False
# ablation mix
if (
input_mix_res
and (
self.get_model().config.image_token_len
> getattr(self.get_model().config, "lowres_token", 8) ** 2
)
and frame_split_sizes is not None
and getattr(self.config, "highres", False)
):
if max_visual_len > visual_len:
visual_emb = image_features[cur_image_idx]
text_emb = cur_input_embeds_no_im[-1]
highres_num = math.floor(
(max_visual_len - visual_len)
/ (
split_image_features_unpadded[cur_image_idx].shape[0]
// frame_split_sizes[cur_image_idx]
- visual_emb.shape[0] // frame_split_sizes[cur_image_idx]
)
)
if highres_num >= 1:
mix_token = True
sim = torch.matmul(visual_emb, text_emb.transpose(0, 1)).mean(
dim=-1
)
sim_frame = sim.reshape(
frame_split_sizes[cur_image_idx], -1
).mean(dim=-1)
highres_num = min(highres_num, sim_frame.shape[0])
top_values, top_indices = torch.topk(sim_frame, highres_num)
if len(top_indices) > 0:
sorted_indices = torch.sort(top_indices)[1]
top_indices = top_indices[sorted_indices]
visual_emb_frame = image_features[cur_image_idx].reshape(
frame_split_sizes[cur_image_idx],
-1,
image_features[cur_image_idx].shape[-1],
)
visual_emb_frame_highres = split_image_features_unpadded[
cur_image_idx
].reshape(
frame_split_sizes[cur_image_idx],
-1,
split_image_features_unpadded[cur_image_idx].shape[-1],
)
current_point = 0
mix_visual_emb_frame = []
for frame_i in range(len(visual_emb_frame)):
if current_point > len(top_indices) - 1:
mix_visual_emb_frame.append(
visual_emb_frame[frame_i]
)
continue
if frame_i == top_indices[current_point]:
mix_visual_emb_frame.append(
visual_emb_frame_highres[frame_i]
)
current_point += 1
else:
mix_visual_emb_frame.append(
visual_emb_frame[frame_i]
)
image_features[cur_image_idx] = torch.cat(
mix_visual_emb_frame, dim=0
)
# ablation drop
if (
max_visual_len < visual_len
and frame_split_sizes is not None
and not mix_token
):
visual_emb_frame = image_features[cur_image_idx].reshape(
frame_split_sizes[cur_image_idx],
-1,
image_features[cur_image_idx].shape[-1],
)
sim = F.cosine_similarity(
visual_emb_frame[:-1],
visual_emb_frame[1:],
dim=-1,
)
new_visual_emb_frames = []
for start_idx in range(0, len(visual_emb_frame), 8):
end_idx = min(start_idx + 8, len(visual_emb_frame))
chunk_feature = visual_emb_frame[start_idx:end_idx] # 8, HW, C
if len(chunk_feature) == 1:
new_visual_emb_frames.append(chunk_feature[0])
continue
sim = F.cosine_similarity(
chunk_feature[0]
.unsqueeze(0)
.repeat_interleave(len(chunk_feature[1:]), dim=0),
chunk_feature[1:],
dim=-1,
)
new_visual_emb_frame = torch.cat(
[
chunk_feature[0],
chunk_feature[1:].flatten(0, 1)[
sim.flatten(0, 1)
< getattr(
self.get_model().config, "drop_threshold", 0.7
)
],
],
dim=0,
)
new_visual_emb_frames.append(new_visual_emb_frame)
reduced_visual_len = sum([x.shape[0] for x in new_visual_emb_frames])
if reduced_visual_len > max_visual_len:
force_remove = math.ceil(
(reduced_visual_len - max_visual_len)
/ len(new_visual_emb_frames)
)
for chunk_i in range(len(new_visual_emb_frames)):
new_visual_emb_frames[chunk_i] = new_visual_emb_frames[chunk_i][
:-force_remove
]
new_visual_emb_frames = torch.cat(new_visual_emb_frames, dim=0)
else:
new_visual_emb_frames = torch.cat(new_visual_emb_frames, dim=0)
image_features[cur_image_idx] = new_visual_emb_frames[:max_visual_len]
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(
torch.full(
(cur_image_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(
self.config, "tokenizer_model_max_length", None
)
if tokenizer_model_max_length is not None:
new_input_embeds = [
x[:tokenizer_model_max_length] for x in new_input_embeds
]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full(
(batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device,
)
attention_mask = torch.zeros(
(batch_size, max_len),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
position_ids = torch.zeros(
(batch_size, max_len),
dtype=position_ids.dtype,
device=position_ids.device,
)
for i, (cur_new_embed, cur_new_labels) in enumerate(
zip(new_input_embeds, new_labels)
):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, "tokenizer_padding_side", "right") == "left":
new_input_embeds_padded.append(
torch.cat(
(
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
cur_new_embed,
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(
0,
cur_len,
dtype=position_ids.dtype,
device=position_ids.device,
)
else:
new_input_embeds_padded.append(
torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0,
cur_len,
dtype=position_ids.dtype,
device=position_ids.device,
)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return (
None,
position_ids,
attention_mask,
past_key_values,
new_input_embeds,
new_labels,
vision_tower_aux_feature_list_final,
vision_tower_aux_attention_masks_list_final,
final_size,
global_context_feature_final,
)
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(
model_args.pretrain_mm_mlp_adapter, map_location="cpu"
)
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[
-num_new_tokens:
]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(
f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}."
)
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False