File size: 2,241 Bytes
71da759 4dc80af 71da759 4dc80af e043c8c 4dc80af 71da759 4dc80af 71da759 4dc80af e043c8c 4dc80af 71da759 e043c8c 4dc80af 71da759 4dc80af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: Llama-2-7b-hf-finetuned-mrpc-v5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-finetuned-mrpc-v5
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6070
- Accuracy: 0.8480
- F1: 0.8916
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:------:|:---------------:|
| 0.733 | 1.0 | 917 | 0.6912 | 0.7974 | 0.6016 |
| 0.6103 | 2.0 | 1834 | 0.7402 | 0.8339 | 0.5650 |
| 0.508 | 3.0 | 2751 | 0.7525 | 0.8358 | 0.5246 |
| 0.5354 | 4.0 | 3668 | 0.7794 | 0.8529 | 0.5318 |
| 0.4246 | 5.0 | 4585 | 0.7843 | 0.8508 | 0.5279 |
| 0.4295 | 6.0 | 5502 | 0.7966 | 0.8591 | 0.5248 |
| 0.4473 | 7.0 | 6419 | 0.8162 | 0.8696 | 0.5169 |
| 0.419 | 8.0 | 7336 | 0.8260 | 0.8778 | 0.5552 |
| 0.3876 | 9.0 | 8253 | 0.8284 | 0.8776 | 0.5514 |
| 0.42 | 10.0 | 9170 | 0.5576 | 0.8407 | 0.8862 |
| 0.3678 | 11.0 | 10087 | 0.6212 | 0.8480 | 0.8927 |
| 0.3453 | 12.0 | 11004 | 0.6070 | 0.8480 | 0.8916 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|