File size: 2,457 Bytes
71da759
4dc80af
 
 
 
 
 
 
 
 
 
 
71da759
4dc80af
 
 
 
 
 
 
 
d78ddec
 
337187e
4dc80af
 
 
 
 
 
 
 
 
 
 
 
 
71da759
 
4dc80af
71da759
4dc80af
 
 
 
 
 
 
d78ddec
4dc80af
 
71da759
e043c8c
 
 
 
 
 
 
 
 
 
 
d78ddec
 
 
337187e
 
 
4dc80af
 
 
71da759
4dc80af
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: Llama-2-7b-hf-finetuned-mrpc-v5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-2-7b-hf-finetuned-mrpc-v5

This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the glue dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.8578
- F1: 0.8986
- Loss: 0.6758

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step  | Accuracy | F1     | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:------:|:---------------:|
| 0.733         | 1.0   | 917   | 0.6912   | 0.7974 | 0.6016          |
| 0.6103        | 2.0   | 1834  | 0.7402   | 0.8339 | 0.5650          |
| 0.508         | 3.0   | 2751  | 0.7525   | 0.8358 | 0.5246          |
| 0.5354        | 4.0   | 3668  | 0.7794   | 0.8529 | 0.5318          |
| 0.4246        | 5.0   | 4585  | 0.7843   | 0.8508 | 0.5279          |
| 0.4295        | 6.0   | 5502  | 0.7966   | 0.8591 | 0.5248          |
| 0.4473        | 7.0   | 6419  | 0.8162   | 0.8696 | 0.5169          |
| 0.419         | 8.0   | 7336  | 0.8260   | 0.8778 | 0.5552          |
| 0.3876        | 9.0   | 8253  | 0.8284   | 0.8776 | 0.5514          |
| 0.42          | 10.0  | 9170  | 0.8407   | 0.8862 | 0.5576          |
| 0.3678        | 11.0  | 10087 | 0.8480   | 0.8927 | 0.6212          |
| 0.3453        | 12.0  | 11004 | 0.8480   | 0.8916 | 0.6070          |
| 0.353         | 13.0  | 11921 | 0.8529   | 0.8958 | 0.6705          |
| 0.3257        | 14.0  | 12838 | 0.8407   | 0.8845 | 0.6579          |
| 0.3047        | 15.0  | 13755 | 0.8578   | 0.8986 | 0.6758          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3