File size: 2,154 Bytes
b4580cc 546521c b4580cc 546521c b4580cc 546521c b4580cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- liar
metrics:
- accuracy
model-index:
- name: liar_binaryclassifier_distilbert_cased
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: liar
type: liar
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6464208242950108
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# liar_binaryclassifier_distilbert_cased
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the liar dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6488
- Model Preparation Time: 0.0034
- Accuracy: 0.6464
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:|
| 0.6836 | 1.0 | 461 | 0.6520 | 0.0034 | 0.6226 |
| 0.6423 | 2.0 | 922 | 0.6326 | 0.0034 | 0.6399 |
| 0.6091 | 3.0 | 1383 | 0.6362 | 0.0034 | 0.6443 |
| 0.5843 | 4.0 | 1844 | 0.6422 | 0.0034 | 0.6551 |
| 0.5624 | 5.0 | 2305 | 0.6488 | 0.0034 | 0.6464 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|