File size: 2,611 Bytes
857f8aa
b8a696d
857f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce1df79
857f8aa
 
 
 
 
ce1df79
 
 
 
 
 
 
 
857f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: mit
library_name: peft
tags:
- llama-factory
- lora
- generated_from_trainer
base_model: Qwen/Qwen1.5-7B-Chat
model-index:
- name: '06051615'
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 06051615

This model is a fine-tuned version of [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) on the my own dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9018

## Model description

Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:
* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;
* Significant performance improvement in Chat models;
* Multilingual support of both base and chat models;
* Stable support of 32K context length for models of all sizes
* No need of `trust_remote_code`.
For more details, please refer to the [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5).

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 700
- num_epochs: 5.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7655        | 0.4793 | 700  | 0.9256          |
| 0.8703        | 0.9586 | 1400 | 0.9017          |
| 0.725         | 1.4379 | 2100 | 0.9006          |
| 0.7958        | 1.9172 | 2800 | 0.8908          |
| 0.7346        | 2.3964 | 3500 | 0.8911          |
| 0.6516        | 2.8757 | 4200 | 0.8911          |
| 1.0524        | 3.3550 | 4900 | 0.9006          |
| 1.1005        | 3.8343 | 5600 | 0.8945          |
| 0.7991        | 4.3136 | 6300 | 0.9009          |
| 0.7668        | 4.7929 | 7000 | 0.9016          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1