File size: 5,663 Bytes
e8ffc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#include <math.h>
#include <stdio.h>
#include <stdlib.h>


#include "cluster_gpu.h"
#include "cuda_utils.h"


__device__ float get_dis(float x1, float y1, float z1, float x2, float y2, float z2) {
	float dis = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) + (z1 - z2) * (z1 - z2);
	return sqrt(dis);
}
/*
__device__ void dfs (int i, int c, int n, int min_pts, const int* pts_cnt, const int* pts_adj, int* idx, int label) {
    idx[i] = c;
    if(pts_cnt[i] < min_pts) return;

    for(int j=0;j<n;j++) {

        int adj = pts_adj[i * n + j];
        printf("%d   %d     %d\n", i * n, i * n + j, adj);
        if (adj == -1) break;
        if (idx[adj] == -1)
            dfs(adj, c, n, min_pts, pts_cnt, pts_adj, idx, label);
    }
}
*/

__global__ void dbscan_kernel_fast(int b, int n, float eps, int min_pts, const float *__restrict__ xyz, int *__restrict__ idx,
    int *__restrict__ pts_cnt, int *__restrict__ pts_adj, int *__restrict__ pts_stack) {
    // xyz: (B, N, 3)
    // output:
    //      idx: (B, N)
    int bs_idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (bs_idx >= b) return;

    xyz += bs_idx * n * 3;
    idx += bs_idx * n;
    pts_cnt += bs_idx * n;
    pts_stack += bs_idx * n;
    pts_adj += bs_idx * n * n;

    for(int i=0;i<n;i++) {
        pts_cnt[i] = 0;
        for(int j=0;j<n;j++) {
            pts_adj[i * n + j] = -1;
            if(i==j) continue;
            float x1 = xyz[i * 3 + 0];
            float y1 = xyz[i * 3 + 1];
            float z1 = xyz[i * 3 + 2];
            float x2 = xyz[j * 3 + 0];
            float y2 = xyz[j * 3 + 1];
            float z2 = xyz[j * 3 + 2];

            if(get_dis(x2, y2, z2, -10.0, -10.0, -10.0) < 1e-3) continue;
            if(get_dis(x1, y1, z1, x2, y2, z2) <= eps) {
            pts_adj[i * n + pts_cnt[i]] = j;
                pts_cnt[i] += 1;
            }

        }
    }

    int cluster_idx = 0;

    for(int i=0;i<n;i++) {
        if(idx[i] != -1) continue;

        if(pts_cnt[i] >= min_pts) {
            for(int j=0;j<n;j++)
                pts_stack[j] = -1;
            pts_stack[0] = i;
            int stack_idx = 0;
            int stack_len = 1;
            while (stack_idx < n && pts_stack[stack_idx] != -1)
            {
                int pts_idx = pts_stack[stack_idx];
                idx[pts_idx] = cluster_idx;
                if(pts_cnt[pts_idx] < min_pts){
                    stack_idx += 1;
                    continue;
                }
                for(int j=0;j<n;j++) {
                    int adj = pts_adj[pts_idx * n + j];
                    if (adj == -1) break;
                    if (idx[adj] == -1)
                    {
                        idx[adj] = -2;
                        pts_stack[stack_len++] = adj;
                    }
                }
                stack_idx += 1;
            }
            cluster_idx += 1;
        }
    }
}


void dbscan_kernel_launcher_fast(int b, int n, float eps, int min_pts, const float *xyz, int *idx) {
    // xyz: (B, N, 3)
    // output:
    //      idx: (B, N)

    cudaError_t err;

    dim3 blocks(DIVUP(b, THREADS_PER_BLOCK));  // blockIdx.x(col), blockIdx.y(row)
    dim3 threads(THREADS_PER_BLOCK);

    int* pts_cnt;
    int* pts_stack;
	int* pts_adj;

	err = cudaMalloc((void**)&pts_cnt, b * n * sizeof(int));
    if (cudaSuccess != err) {
        fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
        exit(-1);
    }

    err = cudaMalloc((void**)&pts_stack, b * n * sizeof(int));
    if (cudaSuccess != err) {
        fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
        exit(-1);
    }

    err = cudaMalloc((void**)&pts_adj, b * n * n * sizeof(int));
    if (cudaSuccess != err) {
        fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
        exit(-1);
    }

    dbscan_kernel_fast<<<blocks, threads>>>(b, n, eps, min_pts, xyz, idx, pts_cnt, pts_adj, pts_stack);
    // cudaDeviceSynchronize();  // for using printf in kernel function
    cudaFree(pts_cnt);
    cudaFree(pts_stack);
    cudaFree(pts_adj);
    err = cudaGetLastError();
    if (cudaSuccess != err) {
        fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
        exit(-1);
    }
}



__global__ void cluster_pts_kernel_fast(int b, int n, int m, const float *__restrict__ xyz, const int *__restrict__ idx,
    float *__restrict__ new_xyz, int *__restrict__ num) {
    int bs_idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (bs_idx >= b ) return;

    xyz += bs_idx * n * 3;
    idx += bs_idx * n;
    new_xyz += bs_idx * m * 3;
    num += bs_idx * m;

    for(int i=0;i<n;i++) {
        if (idx[i] == -1) continue;
        int c_idx = idx[i];
        new_xyz[c_idx * 3 + 0] += xyz[i * 3 + 0];
        new_xyz[c_idx * 3 + 1] += xyz[i * 3 + 1];
        new_xyz[c_idx * 3 + 2] += xyz[i * 3 + 2];
        num[c_idx] += 1;
    }
    for(int i=0;i<m;i++) {
        if (num[i] == 0) break;
        new_xyz[i * 3 + 0] /= num[i];
        new_xyz[i * 3 + 1] /= num[i];
        new_xyz[i * 3 + 2] /= num[i];
    }

}




void cluster_pts_kernel_launcher_fast(int b, int n, int m, const float *xyz, const int *idx, float *new_xyz, int *num) {
    cudaError_t err;

    dim3 blocks(DIVUP(b, THREADS_PER_BLOCK));  // blockIdx.x(col), blockIdx.y(row)
    dim3 threads(THREADS_PER_BLOCK);

    cluster_pts_kernel_fast<<<blocks, threads>>>(b, n, m, xyz, idx, new_xyz, num);
    // cudaDeviceSynchronize();  // for using printf in kernel function
    err = cudaGetLastError();
    if (cudaSuccess != err) {
        fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
        exit(-1);
    }
}