File size: 8,658 Bytes
e8ffc70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
#include <stdio.h>
#include <stdlib.h>
#include "cuda_utils.h"
#include "group_points_gpu.h"
__global__ void group_points_grad_kernel_fast(int b, int c, int n, int npoints, int nsample,
const float *__restrict__ grad_out, const int *__restrict__ idx, float *__restrict__ grad_points) {
// grad_out: (B, C, npoints, nsample)
// idx: (B, npoints, nsample)
// output:
// grad_points: (B, C, N)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int index = blockIdx.x * blockDim.x + threadIdx.x;
int pt_idx = index / nsample;
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
int sample_idx = index % nsample;
grad_out += bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
atomicAdd(grad_points + bs_idx * c * n + c_idx * n + idx[0] , grad_out[0]);
}
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
const float *grad_out, const int *idx, float *grad_points) {
// grad_out: (B, C, npoints, nsample)
// idx: (B, npoints, nsample)
// output:
// grad_points: (B, C, N)
cudaError_t err;
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_grad_kernel_fast<<<blocks, threads>>>(b, c, n, npoints, nsample, grad_out, idx, grad_points);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void group_points_kernel_fast(int b, int c, int n, int npoints, int nsample,
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
// points: (B, C, N)
// idx: (B, npoints, nsample)
// output:
// out: (B, C, npoints, nsample)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int index = blockIdx.x * blockDim.x + threadIdx.x;
int pt_idx = index / nsample;
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
int sample_idx = index % nsample;
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
int in_idx = bs_idx * c * n + c_idx * n + idx[0];
int out_idx = bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
out[out_idx] = points[in_idx];
}
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
const float *points, const int *idx, float *out) {
// points: (B, C, N)
// idx: (B, npoints, nsample)
// output:
// out: (B, C, npoints, nsample)
cudaError_t err;
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_kernel_fast<<<blocks, threads>>>(b, c, n, npoints, nsample, points, idx, out);
// cudaDeviceSynchronize(); // for using printf in kernel function
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void group_points_grad_kernel_stack(int B, int M, int C, int N, int nsample,
const float *grad_out, const int *idx, const int *idx_batch_cnt, const int *features_batch_cnt, float *grad_features) {
// :param grad_out: (M1 + M2 ..., C, nsample) tensor of the gradients of the output from forward
// :param idx: (M1 + M2 ..., nsample) tensor containing the indicies of features to group with
// :param idx_batch_cnt: (batch_size) [M1 + M2 ...] tensor containing the indicies of features to group with
// :param features_batch_cnt: (batch_size) [N1 + N2 ...] tensor containing the indicies of features to group with
// :return:
// grad_features: (N1 + N2 ..., C) gradient of the features
int index = blockIdx.x * blockDim.x + threadIdx.x;
int sample_idx = index % nsample;
int C_idx = (index / nsample) % C;
int pt_idx = (index / nsample / C);
if (pt_idx >= M || C_idx >= C || sample_idx >= nsample) return;
int bs_idx = 0, pt_cnt = idx_batch_cnt[0];
for (int k = 1; k < B; k++){
if (pt_idx < pt_cnt) break;
pt_cnt += idx_batch_cnt[k];
bs_idx = k;
}
int features_batch_start_idx = 0;
for (int k = 0; k < bs_idx; k++) features_batch_start_idx += features_batch_cnt[k];
grad_out += pt_idx * C * nsample + C_idx * nsample + sample_idx;
idx += pt_idx * nsample + sample_idx;
grad_features += (features_batch_start_idx + idx[0]) * C + C_idx;
atomicAdd(grad_features, grad_out[0]);
}
void group_points_grad_kernel_launcher_stack(int B, int M, int C, int N, int nsample,
const float *grad_out, const int *idx, const int *idx_batch_cnt, const int *features_batch_cnt, float *grad_features) {
// :param grad_out: (M1 + M2 ..., C, nsample) tensor of the gradients of the output from forward
// :param idx: (M1 + M2 ..., nsample) tensor containing the indicies of features to group with
// :param idx_batch_cnt: (batch_size) [M1 + M2 ...] tensor containing the indicies of features to group with
// :param features_batch_cnt: (batch_size) [N1 + N2 ...] tensor containing the indicies of features to group with
// :return:
// grad_features: (N1 + N2 ..., C) gradient of the features
cudaError_t err;
// dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 blocks(DIVUP(M * C * nsample, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_grad_kernel_stack<<<blocks, threads>>>(B, M, C, N, nsample, grad_out, idx, idx_batch_cnt, features_batch_cnt, grad_features);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void group_points_kernel_stack(int B, int M, int C, int nsample,
const float *features, const int *features_batch_cnt, const int *idx, const int *idx_batch_cnt, float *out) {
// :param features: (N1 + N2 ..., C) tensor of features to group
// :param features_batch_cnt: (batch_size) [N1 + N2 ...] tensor containing the indicies of features to group with
// :param idx: (M1 + M2 ..., nsample) tensor containing the indicies of features to group with
// :param idx_batch_cnt: (batch_size) [M1 + M2 ...] tensor containing the indicies of features to group with
// :return:
// output: (M1 + M2, C, nsample) tensor
int index = blockIdx.x * blockDim.x + threadIdx.x;
int sample_idx = index % nsample;
int C_idx = (index / nsample) % C;
int pt_idx = (index / nsample / C);
if (pt_idx >= M || C_idx >= C || sample_idx >= nsample) return;
int bs_idx = 0, pt_cnt = idx_batch_cnt[0];
for (int k = 1; k < B; k++){
if (pt_idx < pt_cnt) break;
pt_cnt += idx_batch_cnt[k];
bs_idx = k;
}
int features_batch_start_idx = 0;
for (int k = 0; k < bs_idx; k++) features_batch_start_idx += features_batch_cnt[k];
features += features_batch_start_idx * C;
idx += pt_idx * nsample + sample_idx;
int in_idx = idx[0] * C + C_idx;
int out_idx = pt_idx * C * nsample + C_idx * nsample + sample_idx;
out[out_idx] = features[in_idx];
}
void group_points_kernel_launcher_stack(int B, int M, int C, int nsample,
const float *features, const int *features_batch_cnt, const int *idx, const int *idx_batch_cnt, float *out) {
// :param features: (N1 + N2 ..., C) tensor of features to group
// :param features_batch_cnt: (batch_size) [N1 + N2 ...] tensor containing the indicies of features to group with
// :param idx: (M1 + M2 ..., nsample) tensor containing the indicies of features to group with
// :param idx_batch_cnt: (batch_size) [M1 + M2 ...] tensor containing the indicies of features to group with
// :return:
// output: (M1 + M2, C, nsample) tensor
cudaError_t err;
dim3 blocks(DIVUP(M * C * nsample, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_kernel_stack<<<blocks, threads>>>(B, M, C, nsample, features, features_batch_cnt, idx, idx_batch_cnt, out);
// cudaDeviceSynchronize(); // for using printf in kernel function
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
|