baseline_null / pc_util /src /interpolate_gpu.cu
WatsonTang98's picture
Upload 21 files
e8ffc70 verified
raw
history blame
11.4 kB
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "cuda_utils.h"
#include "interpolate_gpu.h"
__global__ void three_nn_kernel_fast(int b, int n, int m, const float *__restrict__ unknown,
const float *__restrict__ known, float *__restrict__ dist2, int *__restrict__ idx) {
// unknown: (B, N, 3)
// known: (B, M, 3)
// output:
// dist2: (B, N, 3)
// idx: (B, N, 3)
int bs_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || pt_idx >= n) return;
unknown += bs_idx * n * 3 + pt_idx * 3;
known += bs_idx * m * 3;
dist2 += bs_idx * n * 3 + pt_idx * 3;
idx += bs_idx * n * 3 + pt_idx * 3;
float ux = unknown[0];
float uy = unknown[1];
float uz = unknown[2];
double best1 = 1e40, best2 = 1e40, best3 = 1e40;
int besti1 = 0, besti2 = 0, besti3 = 0;
for (int k = 0; k < m; ++k) {
float x = known[k * 3 + 0];
float y = known[k * 3 + 1];
float z = known[k * 3 + 2];
float d = (ux - x) * (ux - x) + (uy - y) * (uy - y) + (uz - z) * (uz - z);
if (d < best1) {
best3 = best2; besti3 = besti2;
best2 = best1; besti2 = besti1;
best1 = d; besti1 = k;
}
else if (d < best2) {
best3 = best2; besti3 = besti2;
best2 = d; besti2 = k;
}
else if (d < best3) {
best3 = d; besti3 = k;
}
}
dist2[0] = best1; dist2[1] = best2; dist2[2] = best3;
idx[0] = besti1; idx[1] = besti2; idx[2] = besti3;
}
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
const float *known, float *dist2, int *idx) {
// unknown: (B, N, 3)
// known: (B, M, 3)
// output:
// dist2: (B, N, 3)
// idx: (B, N, 3)
cudaError_t err;
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
three_nn_kernel_fast<<<blocks, threads>>>(b, n, m, unknown, known, dist2, idx);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void three_interpolate_kernel_fast(int b, int c, int m, int n, const float *__restrict__ points,
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ out) {
// points: (B, C, M)
// idx: (B, N, 3)
// weight: (B, N, 3)
// output:
// out: (B, C, N)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
weight += bs_idx * n * 3 + pt_idx * 3;
points += bs_idx * c * m + c_idx * m;
idx += bs_idx * n * 3 + pt_idx * 3;
out += bs_idx * c * n + c_idx * n;
out[pt_idx] = weight[0] * points[idx[0]] + weight[1] * points[idx[1]] + weight[2] * points[idx[2]];
}
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
const float *points, const int *idx, const float *weight, float *out) {
// points: (B, C, M)
// idx: (B, N, 3)
// weight: (B, N, 3)
// output:
// out: (B, C, N)
cudaError_t err;
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
three_interpolate_kernel_fast<<<blocks, threads>>>(b, c, m, n, points, idx, weight, out);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void three_interpolate_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ grad_points) {
// grad_out: (B, C, N)
// weight: (B, N, 3)
// output:
// grad_points: (B, C, M)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
grad_out += bs_idx * c * n + c_idx * n + pt_idx;
weight += bs_idx * n * 3 + pt_idx * 3;
grad_points += bs_idx * c * m + c_idx * m;
idx += bs_idx * n * 3 + pt_idx * 3;
atomicAdd(grad_points + idx[0], grad_out[0] * weight[0]);
atomicAdd(grad_points + idx[1], grad_out[0] * weight[1]);
atomicAdd(grad_points + idx[2], grad_out[0] * weight[2]);
}
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
const int *idx, const float *weight, float *grad_points) {
// grad_out: (B, C, N)
// weight: (B, N, 3)
// output:
// grad_points: (B, C, M)
cudaError_t err;
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
three_interpolate_grad_kernel_fast<<<blocks, threads>>>(b, c, n, m, grad_out, idx, weight, grad_points);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void three_nn_kernel_stack(int batch_size, int N, int M, const float *unknown,
const int *unknown_batch_cnt, const float *known, const int *known_batch_cnt,
float *dist2, int *idx) {
// unknown: (N1 + N2 ..., 3)
// unknown_batch_cnt: (batch_size), [N1, N2, ...]
// known: (M1 + M2 ..., 3)
// known_batch_cnt: (batch_size), [M1, M2, ...]
// Return:
// dist: (N1 + N2 ..., 3) l2 distance to the three nearest neighbors
// idx: (N1 + N2 ..., 3) index of the three nearest neighbors
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (pt_idx >= N) return;
int bs_idx = 0, pt_cnt = unknown_batch_cnt[0];
for (int k = 1; k < batch_size; k++){
if (pt_idx < pt_cnt) break;
pt_cnt += unknown_batch_cnt[k];
bs_idx = k;
}
int cur_num_known_points = known_batch_cnt[bs_idx];
int known_batch_start_idx = 0;
for (int k = 0; k < bs_idx; k++) known_batch_start_idx += known_batch_cnt[k];
known += known_batch_start_idx * 3;
unknown += pt_idx * 3;
dist2 += pt_idx * 3;
idx += pt_idx * 3;
float ux = unknown[0];
float uy = unknown[1];
float uz = unknown[2];
double best1 = 1e40, best2 = 1e40, best3 = 1e40;
int besti1 = 0, besti2 = 0, besti3 = 0;
for (int k = 0; k < cur_num_known_points; ++k) {
float x = known[k * 3 + 0];
float y = known[k * 3 + 1];
float z = known[k * 3 + 2];
float d = (ux - x) * (ux - x) + (uy - y) * (uy - y) + (uz - z) * (uz - z);
if (d < best1) {
best3 = best2; besti3 = besti2;
best2 = best1; besti2 = besti1;
best1 = d; besti1 = k;
}
else if (d < best2) {
best3 = best2; besti3 = besti2;
best2 = d; besti2 = k;
}
else if (d < best3) {
best3 = d; besti3 = k;
}
}
dist2[0] = best1; dist2[1] = best2; dist2[2] = best3;
idx[0] = besti1 + known_batch_start_idx;
idx[1] = besti2 + known_batch_start_idx;
idx[2] = besti3 + known_batch_start_idx;
}
void three_nn_kernel_launcher_stack(int batch_size, int N, int M, const float *unknown,
const int *unknown_batch_cnt, const float *known, const int *known_batch_cnt,
float *dist2, int *idx) {
// unknown: (N1 + N2 ..., 3)
// unknown_batch_cnt: (batch_size), [N1, N2, ...]
// known: (M1 + M2 ..., 3)
// known_batch_cnt: (batch_size), [M1, M2, ...]
// Return:
// dist: (N1 + N2 ..., 3) l2 distance to the three nearest neighbors
// idx: (N1 + N2 ..., 3) index of the three nearest neighbors
cudaError_t err;
dim3 blocks(DIVUP(N, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
three_nn_kernel_stack<<<blocks, threads>>>(
batch_size, N, M, unknown, unknown_batch_cnt,
known, known_batch_cnt, dist2, idx
);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void three_interpolate_kernel_stack(int N, int channels, const float *features,
const int *idx, const float *weight, float *out) {
// features: (M1 + M2 ..., C)
// idx: [N1 + N2 ..., 3]
// weight: [N1 + N2 ..., 3]
// Return:
// out: (N1 + N2 ..., C)
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (pt_idx >= N || c_idx >= channels) return;
weight += pt_idx * 3;
idx += pt_idx * 3;
out += pt_idx * channels + c_idx;
out[0] = weight[0] * features[idx[0] * channels + c_idx] +
weight[1] * features[idx[1] * channels + c_idx] +
weight[2] * features[idx[2] * channels + c_idx];
}
void three_interpolate_kernel_launcher_stack(int N, int channels,
const float *features, const int *idx, const float *weight, float *out) {
// features: (M1 + M2 ..., C)
// idx: [N1 + N2 ..., 3]
// weight: [N1 + N2 ..., 3]
// Return:
// out: (N1 + N2 ..., C)
cudaError_t err;
dim3 blocks(DIVUP(N, THREADS_PER_BLOCK), channels);
dim3 threads(THREADS_PER_BLOCK);
three_interpolate_kernel_stack<<<blocks, threads>>>(N, channels, features, idx, weight, out);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void three_interpolate_grad_kernel_stack(int N, int channels, const float *grad_out,
const int *idx, const float *weight, float *grad_features) {
// grad_out_tensor: (N1 + N2 ..., C)
// idx_tensor: [N1 + N2 ..., 3]
// weight_tensor: [N1 + N2 ..., 3]
// Return:
// grad_features_tensor: (M1 + M2 ..., C)
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (pt_idx >= N || c_idx >= channels) return;
grad_out += pt_idx * channels + c_idx;
weight += pt_idx * 3;
idx += pt_idx * 3;
// printf("pt_idx=%d, c_idx=%d, idx=(%d, %d, %d), grad_out=%f\n", pt_idx, c_idx, idx[0], idx[1], idx[2], grad_out[0]);
atomicAdd(grad_features + idx[0] * channels + c_idx, grad_out[0] * weight[0]);
atomicAdd(grad_features + idx[1] * channels + c_idx, grad_out[0] * weight[1]);
atomicAdd(grad_features + idx[2] * channels + c_idx, grad_out[0] * weight[2]);
}
void three_interpolate_grad_kernel_launcher_stack(int N, int channels, const float *grad_out,
const int *idx, const float *weight, float *grad_features) {
// grad_out_tensor: (N1 + N2 ..., C)
// idx_tensor: [N1 + N2 ..., 3]
// weight_tensor: [N1 + N2 ..., 3]
// Return:
// grad_features_tensor: (M1 + M2 ..., C)
cudaError_t err;
dim3 blocks(DIVUP(N, THREADS_PER_BLOCK), channels); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
three_interpolate_grad_kernel_stack<<<blocks, threads>>>(
N, channels, grad_out, idx, weight, grad_features
);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}