baseline_null / pc_util /src /interpolate.cpp
WatsonTang98's picture
Upload 21 files
e8ffc70 verified
#include <torch/serialize/tensor.h>
#include <vector>
// #include <THC/THC.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "interpolate_gpu.h"
// extern THCState *state;
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAEvent.h>
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
#define CHECK_CUDA(x) do { \
if (!x.type().is_cuda()) { \
fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
exit(-1); \
} \
} while (0)
#define CHECK_CONTIGUOUS(x) do { \
if (!x.is_contiguous()) { \
fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
exit(-1); \
} \
} while (0)
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor) {
const float *unknown = unknown_tensor.data<float>();
const float *known = known_tensor.data<float>();
float *dist2 = dist2_tensor.data<float>();
int *idx = idx_tensor.data<int>();
three_nn_kernel_launcher_fast(b, n, m, unknown, known, dist2, idx);
}
void three_interpolate_wrapper_fast(int b, int c, int m, int n,
at::Tensor points_tensor,
at::Tensor idx_tensor,
at::Tensor weight_tensor,
at::Tensor out_tensor) {
const float *points = points_tensor.data<float>();
const float *weight = weight_tensor.data<float>();
float *out = out_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
three_interpolate_kernel_launcher_fast(b, c, m, n, points, idx, weight, out);
}
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m,
at::Tensor grad_out_tensor,
at::Tensor idx_tensor,
at::Tensor weight_tensor,
at::Tensor grad_points_tensor) {
const float *grad_out = grad_out_tensor.data<float>();
const float *weight = weight_tensor.data<float>();
float *grad_points = grad_points_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
three_interpolate_grad_kernel_launcher_fast(b, c, n, m, grad_out, idx, weight, grad_points);
}
void three_nn_wrapper_stack(at::Tensor unknown_tensor,
at::Tensor unknown_batch_cnt_tensor, at::Tensor known_tensor,
at::Tensor known_batch_cnt_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor){
// unknown: (N1 + N2 ..., 3)
// unknown_batch_cnt: (batch_size), [N1, N2, ...]
// known: (M1 + M2 ..., 3)
// known_batch_cnt: (batch_size), [M1, M2, ...]
// Return:
// dist: (N1 + N2 ..., 3) l2 distance to the three nearest neighbors
// idx: (N1 + N2 ..., 3) index of the three nearest neighbors
CHECK_INPUT(unknown_tensor);
CHECK_INPUT(unknown_batch_cnt_tensor);
CHECK_INPUT(known_tensor);
CHECK_INPUT(known_batch_cnt_tensor);
CHECK_INPUT(dist2_tensor);
CHECK_INPUT(idx_tensor);
int batch_size = unknown_batch_cnt_tensor.size(0);
int N = unknown_tensor.size(0);
int M = known_tensor.size(0);
const float *unknown = unknown_tensor.data<float>();
const int *unknown_batch_cnt = unknown_batch_cnt_tensor.data<int>();
const float *known = known_tensor.data<float>();
const int *known_batch_cnt = known_batch_cnt_tensor.data<int>();
float *dist2 = dist2_tensor.data<float>();
int *idx = idx_tensor.data<int>();
three_nn_kernel_launcher_stack(batch_size, N, M, unknown, unknown_batch_cnt, known, known_batch_cnt, dist2, idx);
}
void three_interpolate_wrapper_stack(at::Tensor features_tensor,
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor) {
// features_tensor: (M1 + M2 ..., C)
// idx_tensor: [N1 + N2 ..., 3]
// weight_tensor: [N1 + N2 ..., 3]
// Return:
// out_tensor: (N1 + N2 ..., C)
CHECK_INPUT(features_tensor);
CHECK_INPUT(idx_tensor);
CHECK_INPUT(weight_tensor);
CHECK_INPUT(out_tensor);
int N = out_tensor.size(0);
int channels = features_tensor.size(1);
const float *features = features_tensor.data<float>();
const float *weight = weight_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
float *out = out_tensor.data<float>();
three_interpolate_kernel_launcher_stack(N, channels, features, idx, weight, out);
}
void three_interpolate_grad_wrapper_stack(at::Tensor grad_out_tensor, at::Tensor idx_tensor,
at::Tensor weight_tensor, at::Tensor grad_features_tensor) {
// grad_out_tensor: (N1 + N2 ..., C)
// idx_tensor: [N1 + N2 ..., 3]
// weight_tensor: [N1 + N2 ..., 3]
// Return:
// grad_features_tensor: (M1 + M2 ..., C)
CHECK_INPUT(grad_out_tensor);
CHECK_INPUT(idx_tensor);
CHECK_INPUT(weight_tensor);
CHECK_INPUT(grad_features_tensor);
int N = grad_out_tensor.size(0);
int channels = grad_out_tensor.size(1);
const float *grad_out = grad_out_tensor.data<float>();
const float *weight = weight_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
float *grad_features = grad_features_tensor.data<float>();
// printf("N=%d, channels=%d\n", N, channels);
three_interpolate_grad_kernel_launcher_stack(N, channels, grad_out, idx, weight, grad_features);
}