beamaia commited on
Commit
5f96c78
1 Parent(s): 0ee6d78

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +74 -37
README.md CHANGED
@@ -1,65 +1,102 @@
1
  ---
2
- license: apache-2.0
3
- library_name: peft
4
  tags:
5
- - trl
6
- - sft
7
- - generated_from_trainer
8
  base_model: mistralai/Mistral-7B-Instruct-v0.2
9
  model-index:
10
- - name: ZeroShot-pipeline-Mistral
11
  results: []
 
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # ZeroShot-pipeline-Mistral
18
 
19
- This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 1.4332
22
 
23
- ## Model description
24
 
25
- More information needed
26
 
27
- ## Intended uses & limitations
28
 
29
- More information needed
30
 
31
- ## Training and evaluation data
 
 
 
32
 
33
- More information needed
 
34
 
35
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
  - learning_rate: 0.0002
41
- - train_batch_size: 8
42
- - eval_batch_size: 8
43
- - seed: 42
44
- - distributed_type: multi-GPU
45
- - num_devices: 2
46
  - gradient_accumulation_steps: 2
47
- - total_train_batch_size: 32
48
- - total_eval_batch_size: 16
49
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
- - lr_scheduler_type: linear
51
- - lr_scheduler_warmup_ratio: 0.1
52
- - training_steps: 10
53
- - mixed_precision_training: Native AMP
54
 
55
  ### Training results
56
 
57
-
58
-
59
  ### Framework versions
60
 
61
- - PEFT 0.8.2
62
- - Transformers 4.38.2
63
- - Pytorch 2.1.0+cu118
64
- - Datasets 2.17.1
65
- - Tokenizers 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: "trl"
4
  tags:
5
+ - SFT
6
+ - Zeroshot
 
7
  base_model: mistralai/Mistral-7B-Instruct-v0.2
8
  model-index:
9
+ - name: Weni/ZeroShot-pipeline-Mistral
10
  results: []
11
+ language: ['en', 'es', 'pt']
12
  ---
13
 
14
+ # Weni/ZeroShot-pipeline-Mistral
 
15
 
16
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2] on the dataset Weni/zeroshot-3.2.0 with the SFT trainer. It is part of the Zeroshot project for [Weni](https://weni.ai/).
17
 
 
18
  It achieves the following results on the evaluation set:
19
+ {'eval_loss': 1.4332023859024048, 'eval_runtime': 178.4577, 'eval_samples_per_second': 16.065, 'eval_steps_per_second': 1.009, 'epoch': 0.01}
20
 
21
+ ## Intended uses & limitations
22
 
23
+ This model has not been trained to avoid specific intructions.
24
 
25
+ ## Training procedure
26
 
27
+ Finetuning was done on the model mistralai/Mistral-7B-Instruct-v0.2 with the following prompt:
28
 
29
+ ```
30
+ Portuguese:
31
+ [INST] Você é muito especialista em classificar a frase do usuário em um chatbot sobre: {context}
32
+ Pare, pense bem e responda com APENAS UM ÚNICO \`id\` da classe que melhor represente a intenção para a frase do usuário de acordo com a análise de seu contexto, responda APENAS com o \`id\` da classe só se você tiver muita certeza e não explique o motivo. Na ausência, falta de informações ou caso a frase do usuário não se enquadre em nenhuma classe, classifique como "-1".
33
 
34
+ # Essas são as Classes com seus Id e Contexto:
35
+ {all_classes}
36
 
37
+ # Frase do usuário: {input}
38
+ # Id da Classe: [/INST] {output_id}
39
+
40
+
41
+ Spanish:
42
+ [INST] Eres muy experto en clasificar la frase del usuario en un chatbot sobre: {context}
43
+ Deténgase, piense bien y responda con SOLO UN ÚNICO \`id\` de la clase que mejor represente la intención para la frase del usuario de acuerdo con el análisis de su contexto, responda SOLO con el \`id\` de la clase si está muy seguro y no explique el motivo. En ausencia, falta de información o en caso de que la frase del usuario no se ajuste a ninguna clase, clasifique como "-1".
44
+
45
+ # Estas son las Clases con sus Id y Contexto:
46
+ {all_classes}
47
+
48
+ # Frase del usuario: {input}
49
+ # Id de la Clase: [/INST] {output_id}
50
+
51
+
52
+ English:
53
+ [INST] You are very expert in classifying the user sentence in a chatbot about: {context}
54
+ Stop, think carefully, and respond with ONLY ONE SINGLE \`id\` of the class that best represents the intention for the user's sentence according to the analysis of its context, respond ONLY with the \`id\` of the class if you are very sure and do not explain the reason. In the absence, lack of information, or if the user's sentence does not fit into any class, classify as "-1".
55
+
56
+ # These are the Classes and its Context:
57
+ {all_classes}
58
+
59
+ # User's sentence: {input}
60
+ # Class Id: [/INST] {output_id}
61
+ ```
62
 
63
  ### Training hyperparameters
64
 
65
  The following hyperparameters were used during training:
66
  - learning_rate: 0.0002
67
+ - per_device_train_batch_size: 8
68
+ - per_device_eval_batch_size: 8
 
 
 
69
  - gradient_accumulation_steps: 2
70
+ - num_gpus: 4
71
+ - total_train_batch_size: 64
72
+ - optimizer: AdamW
73
+ - lr_scheduler_type: cosine
74
+ - num_steps: 10
75
+ - quantization_type: bitsandbytes
76
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 16\n - lora_alpha: 16\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n - task_type: CAUSAL_LM",)
77
 
78
  ### Training results
79
 
 
 
80
  ### Framework versions
81
 
82
+ - transformers==4.38.2
83
+ - datasets==2.17.1
84
+ - peft==0.8.2
85
+ - safetensors==0.4.2
86
+ - evaluate==0.4.1
87
+ - bitsandbytes==0.42
88
+ - huggingface_hub==0.20.3
89
+ - seqeval==1.2.2
90
+ - optimum==1.17.1
91
+ - auto-gptq==0.7.0
92
+ - gpustat==1.1.1
93
+ - deepspeed==0.13.2
94
+ - wandb==0.16.3
95
+ - trl==0.7.11
96
+ - accelerate==0.27.2
97
+ - coloredlogs==15.0.1
98
+ - traitlets==5.14.1
99
+ - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl
100
+
101
+ ### Hardware
102
+ - Cloud provided: runpod.io