pre model card
Browse files
README.md
CHANGED
@@ -15,4 +15,83 @@ language:
|
|
15 |
- en
|
16 |
base_model: meta-math/MetaMath-Mistral-7B
|
17 |
---
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
- en
|
16 |
base_model: meta-math/MetaMath-Mistral-7B
|
17 |
---
|
18 |
+
# 🔢 Einstein-v6-7B
|
19 |
|
20 |
+
This model is a full fine-tuned version of [meta-math/MetaMath-Mistral-7B](meta-math/MetaMath-Mistral-7B) on the following datasets:
|
21 |
+
|
22 |
+
- 🧮 [TIGER-Lab/MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
|
23 |
+
- 📐 [microsoft/orca-math-word-problems-200k](https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k)
|
24 |
+
|
25 |
+
This model is finetuned using `8xRTX3090` + `1xRTXA6000` using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
|
26 |
+
|
27 |
+
This model's training was sponsored by [sablo.ai](https://sablo.ai).
|
28 |
+
|
29 |
+
<details><summary>See axolotl config</summary>
|
30 |
+
|
31 |
+
axolotl version: `0.4.0`
|
32 |
+
```yaml
|
33 |
+
|
34 |
+
```
|
35 |
+
|
36 |
+
</details><br>
|
37 |
+
|
38 |
+
# 💬 Prompt Template
|
39 |
+
|
40 |
+
You can use this prompt template while using the model:
|
41 |
+
|
42 |
+
### Alpaca
|
43 |
+
|
44 |
+
```
|
45 |
+
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
46 |
+
|
47 |
+
### Instruction:
|
48 |
+
{instruction}
|
49 |
+
|
50 |
+
### Response:
|
51 |
+
|
52 |
+
```
|
53 |
+
|
54 |
+
This prompt template is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
|
55 |
+
`tokenizer.apply_chat_template()` method:
|
56 |
+
|
57 |
+
```python
|
58 |
+
messages = [
|
59 |
+
{"role": "system", "content": "You are helpful AI asistant."},
|
60 |
+
{"role": "user", "content": "Hello!"}
|
61 |
+
]
|
62 |
+
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
|
63 |
+
model.generate(**gen_input)
|
64 |
+
```
|
65 |
+
|
66 |
+
# 🔄 Quantizationed versions
|
67 |
+
|
68 |
+
Quantizationed versions of this model is currently not available. It will be available soon :)
|
69 |
+
|
70 |
+
# 🎯 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
71 |
+
|
72 |
+
# 🤖 Additional information about training
|
73 |
+
|
74 |
+
This model is full fine-tuned for 2 epoch.
|
75 |
+
|
76 |
+
Total number of steps was x.
|
77 |
+
|
78 |
+
<details><summary>Loss graph</summary>
|
79 |
+
|
80 |
+
|
81 |
+
</details><br>
|
82 |
+
|
83 |
+
# 🤝 Acknowledgments
|
84 |
+
|
85 |
+
Thanks to [sablo.ai](https://sablo.ai) for sponsoring this model.
|
86 |
+
|
87 |
+
Thanks to all the dataset authors mentioned in the datasets section.
|
88 |
+
|
89 |
+
Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model.
|
90 |
+
|
91 |
+
Thanks to all open source AI community.
|
92 |
+
|
93 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
94 |
+
|
95 |
+
If you would like to support me:
|
96 |
+
|
97 |
+
[☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)
|