--- library_name: peft license: llama2 datasets: - vicgalle/alpaca-gpt4 language: - en pipeline_tag: text-generation tags: - llama-2 - llama - instruct - instruction --- # Info Adapter model trained with the [**QloRA**](https://arxiv.org/abs/2305.14314) technique * 📜 Model license: [Llama 2 Community License Agreement](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) * 🏛️ Base Model: [Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf) * 🖥️ Machine: Nvidia A100 (40 GB vRAM) * 💵 Cost: $3.5 * ⌛ Training Time: 3 hour 22 minutes * 📊 Dataset Used: [vicgalle/alpaca-gpt4](https://huggingface.co/datasets/vicgalle/alpaca-gpt4) # Evulation Results ([Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)) | | Average | ARC (25-shot) | HellaSwag (10-shot) | MMLU (5-shot) | TruthfulQA (0-shot) | |---------|---------|---------------|---------------------|---------------|--------------------| | Scores | 67.3 | 66.38 | 84.51 | 62.75 | 55.57 | 💪 Our current ranking on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) is 13. # Loss Graph ![](https://i.imgur.com/xPRcRyM.png) ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16