--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy base_model: albert-base-v2 model-index: - name: albert-base-v2-imdb-calssification results: - task: type: text-classification name: Text Classification dataset: name: imdb type: imdb args: plain_text metrics: - type: accuracy value: 0.93612 name: Accuracy --- # albert-base-v2-imdb-calssification label_0: negative label_1: positive This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.1983 - Accuracy: 0.9361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.26 | 1.0 | 1563 | 0.1983 | 0.9361 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3