Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,225 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
|
147 |
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
## Model Card Contact
|
|
|
198 |
|
199 |
-
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
datasets:
|
5 |
+
- gretelai/synthetic_text_to_sql
|
6 |
+
pipeline_tag: text-generation
|
7 |
---
|
8 |
|
9 |
+
# Model Card for LLaMA 3.2 3B Instruct Text2SQL
|
|
|
|
|
|
|
|
|
10 |
|
11 |
## Model Details
|
12 |
|
13 |
### Model Description
|
14 |
|
15 |
+
This is a fine-tuned version of LLaMA 3.2 3B Instruct model, specifically optimized for Text-to-SQL generation tasks. The model has been trained to convert natural language queries into structured SQL commands.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
- **Developed by:** Zhafran Ramadhan
|
18 |
+
- **Model type:** Decoder-only Language Model
|
19 |
+
- **Language(s):** English - MultiLingual
|
20 |
+
- **License:** MIT
|
21 |
+
- **Finetuned from model:** LLaMA 3.2 3B Instruct
|
22 |
|
23 |
+
### Model Sources
|
24 |
+
- **Repository:** https://wandb.ai/zhafranr/LLaMA_3-2_3B_Instruct_FineTune_Text2SQL
|
25 |
+
- **Dataset:** https://huggingface.co/datasets/gretelai/synthetic_text_to_sql
|
26 |
|
27 |
+
## How to Get Started with the Model
|
|
|
|
|
28 |
|
29 |
+
### Installation
|
30 |
+
```python
|
31 |
+
pip install transformers torch
|
32 |
+
```
|
33 |
+
|
34 |
+
### Input Format and Usage
|
35 |
+
The model expects input in a specific format following this template:
|
36 |
+
```text
|
37 |
+
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
38 |
+
|
39 |
+
[System context and database schema]
|
40 |
+
|
41 |
+
<|eot_id|><|start_header_id|>user<|end_header_id|>
|
42 |
+
|
43 |
+
[User query]
|
44 |
+
|
45 |
+
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
46 |
+
```
|
47 |
+
|
48 |
+
### Basic Usage
|
49 |
+
```python
|
50 |
+
from transformers import pipeline
|
51 |
+
|
52 |
+
# Initialize the pipeline
|
53 |
+
generator = pipeline(
|
54 |
+
"text-generation",
|
55 |
+
model="[YOUR_HUGGINGFACE_MODEL_ID]", # Replace with your model ID
|
56 |
+
torch_dtype=torch.float16,
|
57 |
+
device_map="auto"
|
58 |
+
)
|
59 |
+
|
60 |
+
def generate_sql_query(context, question):
|
61 |
+
# Format the prompt according to the training template
|
62 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
63 |
+
|
64 |
+
Cutting Knowledge Date: December 2023
|
65 |
+
Today Date: 07 Nov 2024
|
66 |
+
|
67 |
+
You are a specialized SQL query generator focused solely on the provided RAG database. Your tasks are:
|
68 |
+
1. Generate SQL queries based on user requests that are related to querying the RAG database.
|
69 |
+
2. Only output the SQL query itself, without any additional explanation or commentary.
|
70 |
+
3. Use the context provided from the RAG database to craft accurate queries.
|
71 |
+
|
72 |
+
Context: {context}
|
73 |
+
<|eot_id|><|start_header_id|>user<|end_header_id|>
|
74 |
+
|
75 |
+
{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
76 |
+
|
77 |
+
response = generator(
|
78 |
+
prompt,
|
79 |
+
max_length=500,
|
80 |
+
num_return_sequences=1,
|
81 |
+
temperature=0.1,
|
82 |
+
do_sample=True,
|
83 |
+
pad_token_id=generator.tokenizer.eos_token_id
|
84 |
+
)
|
85 |
+
|
86 |
+
return response[0]['generated_text']
|
87 |
+
|
88 |
+
# Example usage
|
89 |
+
context = """CREATE TABLE upgrades (id INT, cost FLOAT, type TEXT);
|
90 |
+
INSERT INTO upgrades (id, cost, type) VALUES
|
91 |
+
(1, 500, 'Insulation'),
|
92 |
+
(2, 1000, 'HVAC'),
|
93 |
+
(3, 1500, 'Lighting');"""
|
94 |
+
|
95 |
+
questions = [
|
96 |
+
"Find the energy efficiency upgrades with the highest cost and their types.",
|
97 |
+
"Show me all upgrades costing less than 1000 dollars.",
|
98 |
+
"Calculate the average cost of all upgrades."
|
99 |
+
]
|
100 |
+
|
101 |
+
for question in questions:
|
102 |
+
sql = generate_sql_query(context, question)
|
103 |
+
print(f"\nQuestion: {question}")
|
104 |
+
print(f"Generated SQL: {sql}\n")
|
105 |
+
```
|
106 |
+
|
107 |
+
### Advanced Usage with Custom System Prompt
|
108 |
+
```python
|
109 |
+
def generate_sql_with_custom_prompt(context, question, custom_system_prompt=""):
|
110 |
+
base_prompt = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
111 |
+
|
112 |
+
Cutting Knowledge Date: December 2023
|
113 |
+
Today Date: 07 Nov 2024
|
114 |
+
|
115 |
+
You are a specialized SQL query generator focused solely on the provided RAG database."""
|
116 |
+
|
117 |
+
full_prompt = f"""{base_prompt}
|
118 |
+
{custom_system_prompt}
|
119 |
+
|
120 |
+
Context: {context}
|
121 |
+
<|eot_id|><|start_header_id|>user<|end_header_id|>
|
122 |
+
|
123 |
+
{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
124 |
+
|
125 |
+
response = generator(
|
126 |
+
full_prompt,
|
127 |
+
max_length=500,
|
128 |
+
num_return_sequences=1,
|
129 |
+
temperature=0.1,
|
130 |
+
do_sample=True,
|
131 |
+
pad_token_id=generator.tokenizer.eos_token_id
|
132 |
+
)
|
133 |
+
|
134 |
+
return response[0]['generated_text']
|
135 |
+
```
|
136 |
+
|
137 |
+
### Best Practices
|
138 |
+
1. **Input Formatting**:
|
139 |
+
- Always include the special tokens (<|begin_of_text|>, <|eot_id|>, etc.)
|
140 |
+
- Provide complete database schema in context
|
141 |
+
- Keep questions clear and focused on data retrieval
|
142 |
+
|
143 |
+
2. **Parameter Configuration**:
|
144 |
+
- Use temperature=0.1 for consistent SQL generation
|
145 |
+
- Adjust max_length based on expected query complexity
|
146 |
+
- Enable do_sample for more natural completions
|
147 |
+
|
148 |
+
3. **Context Management**:
|
149 |
+
- Include relevant table schemas
|
150 |
+
- Provide sample data when needed
|
151 |
+
- Keep context concise but complete
|
152 |
+
|
153 |
## Uses
|
154 |
|
|
|
|
|
155 |
### Direct Use
|
156 |
+
The model is designed for converting natural language questions into SQL queries. It can be used for:
|
157 |
+
- Database query generation from natural language
|
158 |
+
- SQL query assistance
|
159 |
+
- Data analysis automation
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
### Out-of-Scope Use
|
162 |
+
- Production deployment without human validation
|
163 |
+
- Critical decision-making without human oversight
|
164 |
+
- Direct database execution without query validation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
## Training Details
|
167 |
|
168 |
### Training Data
|
169 |
+
- Dataset: gretelai/synthetic_text_to_sql
|
170 |
+
- Data preprocessing: Standard text-to-SQL formatting
|
|
|
|
|
171 |
|
172 |
### Training Procedure
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
#### Training Hyperparameters
|
175 |
+
- **Total Steps:** 4,149
|
176 |
+
- **Final Training Loss:** 0.1168
|
177 |
+
- **Evaluation Loss:** 0.2125
|
178 |
+
- **Learning Rate:** Dynamic with final LR = 0
|
179 |
+
- **Epochs:** 2.99
|
180 |
+
- **Gradient Norm:** 1.3121
|
181 |
+
|
182 |
+
#### Performance Metrics
|
183 |
+
- **Training Samples/Second:** 6.291
|
184 |
+
- **Evaluation Samples/Second:** 19.325
|
185 |
+
- **Steps/Second:** 3.868
|
186 |
+
- **Total FLOPS:** 1.92e18
|
187 |
+
|
188 |
+
#### Training Infrastructure
|
189 |
+
- **Hardware:** Single NVIDIA H100 GPU
|
190 |
+
- **Training Duration:** 5-6 hours
|
191 |
+
- **Total Runtime:** 16,491.75 seconds
|
192 |
+
- **Model Preparation Time:** 0.0051 seconds
|
193 |
|
194 |
## Evaluation
|
195 |
|
196 |
+
### Metrics
|
197 |
+
The model's performance was tracked using several key metrics:
|
198 |
+
- **Training Loss:** Started at ~1.2, converged to 0.1168
|
199 |
+
- **Evaluation Loss:** 0.2125
|
200 |
+
- **Processing Efficiency:** 19.325 samples per second during evaluation
|
|
|
|
|
201 |
|
202 |
+
### Results Summary
|
203 |
+
- Achieved stable convergence after ~4000 steps
|
204 |
+
- Maintained consistent performance metrics throughout training
|
205 |
+
- Shows good balance between training and evaluation loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
## Environmental Impact
|
208 |
|
209 |
+
- **Hardware Type:** NVIDIA H100 GPU
|
210 |
+
- **Hours used:** ~6 hours
|
211 |
+
- **Training Location:** [User to specify]
|
212 |
|
213 |
+
## Technical Specifications
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
### Compute Infrastructure
|
216 |
+
- **GPU:** NVIDIA H100
|
217 |
+
- **Training Duration:** 5-6 hours
|
218 |
+
- **Total Steps:** 4,149
|
219 |
+
- **FLOPs Utilized:** 1.92e18
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
## Model Card Contact
|
222 |
+
[Contact information to be added by Zhafran Ramadhan]
|
223 |
|
224 |
+
---
|
225 |
+
*Note: This model card follows the guidelines set by the ML community for responsible AI development and deployment.*
|