File size: 2,488 Bytes
63aa117
 
 
 
 
013167f
 
 
 
 
63aa117
 
 
 
 
 
 
 
 
 
013167f
 
 
 
 
 
 
63aa117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
013167f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63aa117
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
base_model: mnaylor/mega-base-wikitext
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: mega-base-multiple-choice-fp16-v4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mega-base-multiple-choice-fp16-v4

This model is a fine-tuned version of [mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6932
- Accuracy: 0.4964
- Precision: 0.4964
- Recall: 0.5023
- F1: 0.4993

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1024
- eval_batch_size: 1024
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 24000
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 1.0   | 34   | 0.6932          | 0.4970   | 0.4971    | 0.5023 | 0.4997 |
| No log        | 2.0   | 68   | 0.6932          | 0.4975   | 0.4975    | 0.5026 | 0.5001 |
| No log        | 3.0   | 102  | 0.6932          | 0.4974   | 0.4974    | 0.5020 | 0.4997 |
| No log        | 4.0   | 136  | 0.6932          | 0.4995   | 0.4995    | 0.5043 | 0.5019 |
| No log        | 5.0   | 170  | 0.6932          | 0.4975   | 0.4975    | 0.5023 | 0.4999 |
| No log        | 6.0   | 204  | 0.6932          | 0.4987   | 0.4987    | 0.5043 | 0.5015 |
| No log        | 7.0   | 238  | 0.6932          | 0.4960   | 0.4961    | 0.5026 | 0.4993 |
| No log        | 8.0   | 272  | 0.6932          | 0.4967   | 0.4967    | 0.5036 | 0.5002 |
| No log        | 9.0   | 306  | 0.6932          | 0.4965   | 0.4966    | 0.5    | 0.4983 |
| No log        | 10.0  | 340  | 0.6932          | 0.4964   | 0.4964    | 0.5023 | 0.4993 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0