--- base_model: laion/clap-htsat-unfused library_name: transformers.js tags: - zero-shot-audio-classification --- https://huggingface.co/laion/clap-htsat-unfused with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Perform zero-shot audio classification with `Xenova/clap-htsat-unfused`. ```js import { pipeline } from '@xenova/transformers'; const classifier = await pipeline('zero-shot-audio-classification', 'Xenova/clap-htsat-unfused'); const audio = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/dog_barking.wav'; const candidate_labels = ['dog', 'vaccum cleaner']; const scores = await classifier(audio, candidate_labels); // [ // { score: 0.9993992447853088, label: 'dog' }, // { score: 0.0006007603369653225, label: 'vaccum cleaner' } // ] ``` **Example:** Compute text embeddings with `ClapTextModelWithProjection`. ```js import { AutoTokenizer, ClapTextModelWithProjection } from '@xenova/transformers'; // Load tokenizer and text model const tokenizer = await AutoTokenizer.from_pretrained('Xenova/clap-htsat-unfused'); const text_model = await ClapTextModelWithProjection.from_pretrained('Xenova/clap-htsat-unfused'); // Run tokenization const texts = ['a sound of a cat', 'a sound of a dog']; const text_inputs = tokenizer(texts, { padding: true, truncation: true }); // Compute embeddings const { text_embeds } = await text_model(text_inputs); // Tensor { // dims: [ 2, 512 ], // type: 'float32', // data: Float32Array(1024) [ ... ], // size: 1024 // } ``` **Example:** Compute audio embeddings with `ClapAudioModelWithProjection`. ```js import { AutoProcessor, ClapAudioModelWithProjection, read_audio } from '@xenova/transformers'; // Load processor and audio model const processor = await AutoProcessor.from_pretrained('Xenova/clap-htsat-unfused'); const audio_model = await ClapAudioModelWithProjection.from_pretrained('Xenova/clap-htsat-unfused'); // Read audio and run processor const audio = await read_audio('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cat_meow.wav'); const audio_inputs = await processor(audio); // Compute embeddings const { audio_embeds } = await audio_model(audio_inputs); // Tensor { // dims: [ 1, 512 ], // type: 'float32', // data: Float32Array(512) [ ... ], // size: 512 // } ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).