Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers.js
|
3 |
+
tags:
|
4 |
+
- image-matting
|
5 |
+
- portrait-matting
|
6 |
+
---
|
7 |
+
|
8 |
+
https://github.com/ZHKKKe/MODNet with ONNX weights to be compatible with Transformers.js.
|
9 |
+
|
10 |
+
## Usage (Transformers.js)
|
11 |
+
|
12 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
13 |
+
```bash
|
14 |
+
npm i @xenova/transformers
|
15 |
+
```
|
16 |
+
|
17 |
+
You can then use the model for portrait matting, as follows:
|
18 |
+
|
19 |
+
```js
|
20 |
+
import { AutoProcessor, RawImage, AutoModel } from '@xenova/transformers';
|
21 |
+
|
22 |
+
// Load model and processor
|
23 |
+
const model = await AutoModel.from_pretrained('Xenova/modnet-onnx', { quantized: false });
|
24 |
+
const processor = await AutoProcessor.from_pretrained('Xenova/modnet-onnx');
|
25 |
+
|
26 |
+
// Load image from URL
|
27 |
+
const url = 'https://images.pexels.com/photos/5965592/pexels-photo-5965592.jpeg?auto=compress&cs=tinysrgb&w=1024';
|
28 |
+
const image = await RawImage.fromURL(url);
|
29 |
+
|
30 |
+
// Pre-process image
|
31 |
+
const { pixel_values } = await processor(image);
|
32 |
+
|
33 |
+
// Predict alpha matte
|
34 |
+
const { output } = await model({ input: pixel_values });
|
35 |
+
|
36 |
+
// Save output mask
|
37 |
+
const mask = await RawImage.fromTensor(output[0].mul(255).to('uint8')).resize(image.width, image.height);
|
38 |
+
mask.save('mask.png');
|
39 |
+
```
|
40 |
+
|
41 |
+
| Input image | Output mask |
|
42 |
+
|--------|--------|
|
43 |
+
| ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/mhmDJgp5GgnbvQnUc2SVI.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/H1VBX6dS-xTpg14cl1Zxx.png) |
|
44 |
+
|
45 |
+
---
|
46 |
+
|
47 |
+
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
For more information, see the original [repo](https://github.com/ZHKKKe/MODNet) and example [colab](https://colab.research.google.com/drive/1P3cWtg8fnmu9karZHYDAtmm1vj1rgA-f?usp=sharing).
|