Update README.md
Browse files
README.md
CHANGED
@@ -12,4 +12,89 @@ license: apache-2.0
|
|
12 |
|
13 |
https://huggingface.co/qnguyen3/nanoLLaVA with ONNX weights to be compatible with Transformers.js.
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
|
12 |
|
13 |
https://huggingface.co/qnguyen3/nanoLLaVA with ONNX weights to be compatible with Transformers.js.
|
14 |
|
15 |
+
## Usage (Transformers.js)
|
16 |
+
|
17 |
+
> [!IMPORTANT]
|
18 |
+
> NOTE: nanoLLaVA support is experimental and requires you to install Transformers.js [v3](https://github.com/xenova/transformers.js/tree/v3) from source.
|
19 |
+
|
20 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [GitHub](https://github.com/xenova/transformers.js/tree/v3) using:
|
21 |
+
```bash
|
22 |
+
npm install xenova/transformers.js#v3
|
23 |
+
```
|
24 |
+
|
25 |
+
**Example:**
|
26 |
+
```js
|
27 |
+
import { AutoProcessor, AutoTokenizer, LlavaForConditionalGeneration, RawImage } from '@xenova/transformers';
|
28 |
+
|
29 |
+
// Load tokenizer, processor and model
|
30 |
+
const model_id = 'Xenova/nanoLLaVA';
|
31 |
+
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
|
32 |
+
const processor = await AutoProcessor.from_pretrained(model_id);
|
33 |
+
const model = await LlavaForConditionalGeneration.from_pretrained(model_id, {
|
34 |
+
dtype: {
|
35 |
+
embed_tokens: 'fp16', // or 'fp32' or 'q8'
|
36 |
+
vision_encoder: 'fp16', // or 'fp32' or 'q8'
|
37 |
+
decoder_model_merged: 'q4', // or 'q8'
|
38 |
+
},
|
39 |
+
// device: 'webgpu',
|
40 |
+
});
|
41 |
+
|
42 |
+
// Prepare text inputs
|
43 |
+
const prompt = 'What does the text say?';
|
44 |
+
const messages = [
|
45 |
+
{ role: 'system', content: 'Answer the question.' },
|
46 |
+
{ role: 'user', content: `<image>\n${prompt}` }
|
47 |
+
]
|
48 |
+
const text = tokenizer.apply_chat_template(messages, { tokenize: false, add_generation_prompt: true });
|
49 |
+
const text_inputs = tokenizer(text);
|
50 |
+
|
51 |
+
// Prepare vision inputs
|
52 |
+
const url = 'https://huggingface.co/qnguyen3/nanoLLaVA/resolve/main/example_1.png';
|
53 |
+
const image = await RawImage.fromURL(url);
|
54 |
+
const vision_inputs = await processor(image);
|
55 |
+
|
56 |
+
// Generate response
|
57 |
+
const { past_key_values, sequences } = await model.generate({
|
58 |
+
...text_inputs,
|
59 |
+
...vision_inputs,
|
60 |
+
do_sample: false,
|
61 |
+
max_new_tokens: 64,
|
62 |
+
return_dict_in_generate: true,
|
63 |
+
});
|
64 |
+
|
65 |
+
// Decode output
|
66 |
+
const answer = tokenizer.decode(
|
67 |
+
sequences.slice(0, [text_inputs.input_ids.dims[1], null]),
|
68 |
+
{ skip_special_tokens: true },
|
69 |
+
);
|
70 |
+
console.log(answer);
|
71 |
+
// The text reads "Small but mighty".
|
72 |
+
|
73 |
+
const new_messages = [
|
74 |
+
...messages,
|
75 |
+
{ role: 'assistant', content: answer },
|
76 |
+
{ role: 'user', content: 'How does the text correlate to the context of the image?' }
|
77 |
+
]
|
78 |
+
const new_text = tokenizer.apply_chat_template(new_messages, { tokenize: false, add_generation_prompt: true });
|
79 |
+
const new_text_inputs = tokenizer(new_text);
|
80 |
+
|
81 |
+
// Generate another response
|
82 |
+
const output = await model.generate({
|
83 |
+
...new_text_inputs,
|
84 |
+
past_key_values,
|
85 |
+
do_sample: false,
|
86 |
+
max_new_tokens: 256,
|
87 |
+
});
|
88 |
+
const new_answer = tokenizer.decode(
|
89 |
+
output.slice(0, [new_text_inputs.input_ids.dims[1], null]),
|
90 |
+
{ skip_special_tokens: true },
|
91 |
+
);
|
92 |
+
console.log(new_answer);
|
93 |
+
// The context of the image is that of a playful and humorous illustration of a mouse holding a weightlifting bar. The text "Small but mighty" is a playful reference to the mouse's size and strength.
|
94 |
+
```
|
95 |
+
|
96 |
+
We also released an online demo, which you can try yourself: https://huggingface.co/spaces/Xenova/experimental-nanollava-webgpu
|
97 |
+
|
98 |
+
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/0T-aNjgXt6PGL3qIl8wBc.mp4"></video>
|
99 |
+
|
100 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|