Xenova HF staff commited on
Commit
809fd05
1 Parent(s): 00df6b4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +189 -1
README.md CHANGED
@@ -3,4 +3,192 @@ library_name: transformers.js
3
  tags:
4
  - pose-estimation
5
  license: agpl-3.0
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  tags:
4
  - pose-estimation
5
  license: agpl-3.0
6
+ ---
7
+
8
+ YOLOv8m-pose with ONNX weights to be compatible with Transformers.js.
9
+
10
+ ## Usage (Transformers.js)
11
+
12
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
13
+ ```bash
14
+ npm i @xenova/transformers
15
+ ```
16
+
17
+ **Example:** Perform pose-estimation w/ `Xenova/yolov8m-pose`.
18
+
19
+ ```js
20
+ import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';
21
+
22
+ // Load model and processor
23
+ const model_id = 'Xenova/yolov8m-pose';
24
+ const model = await AutoModel.from_pretrained(model_id);
25
+ const processor = await AutoProcessor.from_pretrained(model_id);
26
+
27
+ // Read image and run processor
28
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg';
29
+ const image = await RawImage.read(url);
30
+ const { pixel_values } = await processor(image);
31
+
32
+ // Set thresholds
33
+ const threshold = 0.3; // Remove detections with low confidence
34
+ const iouThreshold = 0.5; // Used to remove duplicates
35
+ const pointThreshold = 0.3; // Hide uncertain points
36
+
37
+ // Predict bounding boxes and keypoints
38
+ const { output0 } = await model({ images: pixel_values });
39
+
40
+ // Post-process:
41
+ const permuted = output0[0].transpose(1, 0);
42
+ // `permuted` is a Tensor of shape [ 8400, 56 ]:
43
+ // - 8400 potential detections
44
+ // - 56 parameters for each box:
45
+ // - 4 for the bounding box dimensions (x-center, y-center, width, height)
46
+ // - 1 for the confidence score
47
+ // - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy)
48
+
49
+ // Example code to format it nicely:
50
+ const results = [];
51
+ const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2);
52
+ for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) {
53
+ if (score < threshold) continue;
54
+
55
+ // Get pixel values, taking into account the original image size
56
+ const x1 = (xc - w / 2) / scaledWidth * image.width;
57
+ const y1 = (yc - h / 2) / scaledHeight * image.height;
58
+ const x2 = (xc + w / 2) / scaledWidth * image.width;
59
+ const y2 = (yc + h / 2) / scaledHeight * image.height;
60
+ results.push({ x1, x2, y1, y2, score, keypoints })
61
+ }
62
+
63
+
64
+ // Define helper functions
65
+ function removeDuplicates(detections, iouThreshold) {
66
+ const filteredDetections = [];
67
+
68
+ for (const detection of detections) {
69
+ let isDuplicate = false;
70
+ let duplicateIndex = -1;
71
+ let maxIoU = 0;
72
+
73
+ for (let i = 0; i < filteredDetections.length; ++i) {
74
+ const filteredDetection = filteredDetections[i];
75
+ const iou = calculateIoU(detection, filteredDetection);
76
+ if (iou > iouThreshold) {
77
+ isDuplicate = true;
78
+ if (iou > maxIoU) {
79
+ maxIoU = iou;
80
+ duplicateIndex = i;
81
+ }
82
+ }
83
+ }
84
+
85
+ if (!isDuplicate) {
86
+ filteredDetections.push(detection);
87
+ } else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) {
88
+ filteredDetections[duplicateIndex] = detection;
89
+ }
90
+ }
91
+
92
+ return filteredDetections;
93
+ }
94
+
95
+ function calculateIoU(detection1, detection2) {
96
+ const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1));
97
+ const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1));
98
+ const overlapArea = xOverlap * yOverlap;
99
+
100
+ const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1);
101
+ const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1);
102
+ const unionArea = area1 + area2 - overlapArea;
103
+
104
+ return overlapArea / unionArea;
105
+ }
106
+
107
+ const filteredResults = removeDuplicates(results, iouThreshold);
108
+
109
+ // Display results
110
+ for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) {
111
+ console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`)
112
+ for (let i = 0; i < keypoints.length; i += 3) {
113
+ const label = model.config.id2label[Math.floor(i / 3)];
114
+ const [x, y, point_score] = keypoints.slice(i, i + 3);
115
+ if (point_score < pointThreshold) continue;
116
+ console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`);
117
+ }
118
+ }
119
+ ```
120
+
121
+ <details>
122
+
123
+ <summary>See example output</summary>
124
+
125
+ ```
126
+ Found person at [535.503101348877, 39.878777217864986, 644.8351860046387, 346.3689248085022] with score 0.655
127
+ - nose: (444.86, 91.25) with score 0.912
128
+ - left_eye: (449.55, 79.71) with score 0.912
129
+ - right_eye: (436.53, 82.54) with score 0.689
130
+ - left_ear: (457.66, 83.08) with score 0.774
131
+ - left_shoulder: (476.25, 126.43) with score 0.984
132
+ - right_shoulder: (419.05, 129.94) with score 0.675
133
+ - left_elbow: (495.99, 180.55) with score 0.960
134
+ - left_wrist: (504.15, 233.96) with score 0.888
135
+ - left_hip: (469.08, 227.61) with score 0.961
136
+ - right_hip: (428.82, 228.95) with score 0.821
137
+ - left_knee: (474.97, 301.15) with score 0.919
138
+ - right_knee: (434.24, 305.24) with score 0.704
139
+ - left_ankle: (467.31, 384.83) with score 0.625
140
+ - right_ankle: (439.09, 379.35) with score 0.378
141
+ Found person at [-0.08985519409179688, 56.876064038276674, 158.62728118896484, 371.25909755229947] with score 0.902
142
+ - nose: (61.15, 102.21) with score 0.979
143
+ - left_eye: (66.59, 91.92) with score 0.939
144
+ - right_eye: (51.35, 95.02) with score 0.905
145
+ - left_ear: (70.82, 97.11) with score 0.778
146
+ - right_ear: (48.08, 97.46) with score 0.655
147
+ - left_shoulder: (84.60, 139.95) with score 0.997
148
+ - right_shoulder: (38.36, 139.32) with score 0.996
149
+ - left_elbow: (98.25, 196.80) with score 0.990
150
+ - right_elbow: (24.83, 188.15) with score 0.981
151
+ - left_wrist: (103.38, 252.91) with score 0.977
152
+ - right_wrist: (9.42, 233.04) with score 0.965
153
+ - left_hip: (82.91, 247.50) with score 0.999
154
+ - right_hip: (51.28, 248.31) with score 0.999
155
+ - left_knee: (85.25, 326.65) with score 0.997
156
+ - right_knee: (49.12, 330.50) with score 0.996
157
+ - left_ankle: (96.84, 419.45) with score 0.964
158
+ - right_ankle: (51.88, 416.89) with score 0.960
159
+ Found person at [109.41852569580077, 13.203005981445314, 505.06954193115234, 532.9905454635621] with score 0.911
160
+ - nose: (126.16, 102.84) with score 0.586
161
+ - left_eye: (125.44, 84.07) with score 0.352
162
+ - left_ear: (137.38, 77.79) with score 0.722
163
+ - left_shoulder: (181.75, 122.32) with score 0.997
164
+ - right_shoulder: (180.20, 152.15) with score 0.998
165
+ - left_elbow: (262.31, 202.36) with score 0.996
166
+ - right_elbow: (194.94, 277.60) with score 0.997
167
+ - left_wrist: (298.87, 269.32) with score 0.987
168
+ - right_wrist: (132.86, 281.44) with score 0.990
169
+ - left_hip: (272.70, 284.47) with score 1.000
170
+ - right_hip: (274.35, 307.48) with score 1.000
171
+ - left_knee: (247.66, 441.74) with score 0.997
172
+ - right_knee: (256.27, 500.82) with score 0.998
173
+ - left_ankle: (340.54, 455.33) with score 0.848
174
+ - right_ankle: (338.54, 543.24) with score 0.882
175
+ Found person at [425.35156250000006, 68.73829221725464, 640.3047943115234, 494.19192361831665] with score 0.901
176
+ - nose: (425.40, 147.53) with score 0.995
177
+ - left_eye: (432.33, 133.12) with score 0.985
178
+ - right_eye: (410.70, 135.98) with score 0.969
179
+ - left_ear: (440.72, 134.14) with score 0.901
180
+ - right_ear: (400.69, 134.89) with score 0.800
181
+ - left_shoulder: (455.11, 201.19) with score 1.000
182
+ - right_shoulder: (368.64, 201.60) with score 0.999
183
+ - left_elbow: (455.25, 292.03) with score 0.998
184
+ - right_elbow: (350.65, 258.24) with score 0.989
185
+ - left_wrist: (475.06, 370.36) with score 0.992
186
+ - right_wrist: (398.78, 263.84) with score 0.975
187
+ - left_hip: (441.94, 359.78) with score 1.000
188
+ - right_hip: (384.06, 368.70) with score 1.000
189
+ - left_knee: (462.74, 452.41) with score 0.998
190
+ - right_knee: (395.50, 488.42) with score 0.997
191
+ - left_ankle: (465.12, 540.38) with score 0.960
192
+ - right_ankle: (433.43, 569.37) with score 0.938
193
+ ```
194
+ </details>