File size: 1,202 Bytes
47fad1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
base_model: microsoft/Phi-3-mini-4k-instruct
datasets:
  - AlignmentLab-AI/alpaca-cot-collection
language:
  - en
library_name: peft
license: apache-2.0
pipeline_tag: text-generation
---

# Xenith-3B
Xenith-3B is a fine-tuned language model based on the microsoft/Phi-3-mini-4k-instruct model. It has been specifically trained on the AlignmentLab-AI/alpaca-cot-collection dataset, which focuses on chain-of-thought reasoning and instruction following.

# Model Overview
- Model Name: Xenith-3B
- Base Model: microsoft/Phi-3-mini-4k-instruct
- Fine-Tuned On: AlignmentLab-AI/alpaca-cot-collection
- Model Size: 3 Billion parameters
- Architecture: Transformer-based LLM

# Training Details
- Objective: Fine-tune the base model to enhance its performance on tasks requiring complex reasoning and multi-step problem-solving.
- Training Duration: 10 epochs
- Batch Size: 8
- Learning Rate: 3e-5
- Optimizer: AdamW
- Hardware Used: 2x NVIDIA L4 GPUs

# Performance
Xenith-3B excels in tasks that require:

- Chain-of-thought reasoning
- Instruction following
- Contextual understanding
- Complex problem-solving
- 
The model has shown significant improvements in these areas compared to the base model.