|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
from typing_extensions import Self |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class XModelConfig(PretrainedConfig): |
|
model_type = "xmodel" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=65280, |
|
hidden_size=4096, |
|
intermediate_size=None, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=32, |
|
hidden_act="silu", |
|
max_position_embeddings=131072, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-5, |
|
use_cache=True, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
pretraining_tp=1, |
|
tie_word_embeddings=False, |
|
rope_theta=500000.0, |
|
rope_scaling=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
|
|
if intermediate_size is None: |
|
self.intermediate_size = find_multiple(int(8 * hidden_size / 3), 256) |
|
else: |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.pretraining_tp = pretraining_tp |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.auto_map = { |
|
"AutoConfig": "configuration_xmodel.XModelConfig", |
|
"AutoModelForCausalLM": "modeling_xmodel.XModelForCausalLM" |
|
} |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
@classmethod |
|
def from_name(cls, name: str) -> Self: |
|
return cls(**xmodel_configs[name]) |
|
|
|
|
|
xmodel_configs = { |
|
"nano": dict(num_hidden_layers=6, num_attention_heads=6, num_key_value_heads=1, hidden_size=192), |
|
"micro": dict(num_hidden_layers=6, num_attention_heads=6, num_key_value_heads=1, hidden_size=384), |
|
"tiny": dict(num_hidden_layers=8, num_attention_heads=8, num_key_value_heads=2, hidden_size=512), |
|
"small": dict(num_hidden_layers=12, num_attention_heads=12, num_key_value_heads=3, hidden_size=768), |
|
|
|
"medium": dict(num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=4, hidden_size=1024), |
|
"large": dict(num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=4, hidden_size=1536), |
|
"xl": dict(num_hidden_layers=24, num_attention_heads=32, num_key_value_heads=4, hidden_size=2048), |
|
"3B": dict(num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=4, hidden_size=2560), |
|
"7B": dict(num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_size=4096), |
|
"13B": dict(num_hidden_layers=40, num_attention_heads=40, num_key_value_heads=40, hidden_size=5120), |
|
"34B": dict(num_hidden_layers=48, num_attention_heads=64, num_key_value_heads=8, hidden_size=8192), |
|
"70B": dict(num_hidden_layers=80, num_attention_heads=64, num_key_value_heads=8, hidden_size=8192), |
|
} |
|
|
|
|
|
def find_multiple(n: int, k: int) -> int: |
|
if n % k == 0: |
|
return n |
|
return n + k - (n % k) |
|
|