LunarLander-v2-PPO / config.json
eyac's picture
Upload PPO LunarLander-v2 agent
128f1d5 verified
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79c85cc4dab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79c85cc4db40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79c85cc4dbd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79c85cc4dc60>", "_build": "<function ActorCriticPolicy._build at 0x79c85cc4dcf0>", "forward": "<function ActorCriticPolicy.forward at 0x79c85cc4dd80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79c85cc4de10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79c85cc4dea0>", "_predict": "<function ActorCriticPolicy._predict at 0x79c85cc4df30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79c85cc4dfc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79c85cc4e050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79c85cc4e0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c85cbe2bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730579162914664089, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDoIT7Pl1m88gaquoRD1DjhldC9uDLnOQAAgD8AAIA/mqn3OnZ2rz/6sEM9kJT4vmirDLuWVy+8AAAAAAAAAABmmMW99Q9nPkr39j1ub5W+h7fNPFmjgj0AAAAAAAAAAMhYg75+w5o+LweFPiX76b5SmlS98sc7PQAAAAAAAAAAmoX0u7cvRD9Q7lM9MOITv+pF7rxi8dc7AAAAAAAAAABAyMK9G1+QP+90Sr6p0yy/nlzSvQgrsToAAAAAAAAAAJC1lr6S1yU/NdfaO34ODb/uPke+XV6YPQAAAAAAAAAAs8Q3vT18XLt3bca76c8OPSbszjzjTu69AACAPwAAgD/gYiw+dLidvAf7Q7mp+iA4hqUMvlQFkTgAAIA/AACAP0MjgT4E6Z4/78kFPwlXFL/sCqA+tsoFPgAAAAAAAAAArXlePkBcnD6a11m+no23vmg7PjwsRT+9AAAAAAAAAADDuH6+QceSPwdhA7+7kgm/sYibvhYbzb0AAAAAAAAAADPT0rs2Vkm8VoJiPNs+FL6A5AC8VmRwvAAAgD8AAIA/TaXXvS4Fkz3GAIA+mwYuvvi82D1gEeQ8AAAAAAAAAAAggz0+AXTMvPMd4DlzqZG4noc7vnObXrkAAIA/AACAP905mT5k+o0/DMSdPpV8Lb8ry7g+oZQFPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHA3rO/tY0WMAWyUS9GMAXSUR0CmKXPBacI7dX2UKGgGR0BxV+fpUxVRaAdL3WgIR0CmKZY/Vy3kdX2UKGgGR0BugDd+G47SaAdLxGgIR0CmKsNPP9k0dX2UKGgGR0Buqjy+Yc//aAdLy2gIR0CmKt/ub7TEdX2UKGgGR0ByuVgMMI/raAdL9WgIR0CmKyNdiUgTdX2UKGgGR0Bw5IZl4C6paAdL0GgIR0CmKzdOh0yQdX2UKGgGR0Bwba3H7xd6aAdLuGgIR0CmK64+B6KMdX2UKGgGR0BxDp7+kxh2aAdL42gIR0CmLHCwjdHldX2UKGgGR0Bxj3Qla8pTaAdLzGgIR0CmLQMniNsFdX2UKGgGR0Bx/m+sYEW7aAdNAwFoCEdApi0iosI3SHV9lChoBkdAc+RGvOhTO2gHS99oCEdApi0iJoCdSXV9lChoBkdAb/KX3QD3d2gHS/doCEdApi2W7e2uxXV9lChoBkdAcXZH80k4WGgHS+RoCEdApi3Fgtvn83V9lChoBkdAcYX6sQumJmgHS8NoCEdApi7qQq7ROXV9lChoBkdAcP2xxT850mgHS7doCEdApi8h9w3o93V9lChoBkdAcRu/tpmEoWgHS7BoCEdApi+bO9nK4nV9lChoBkdAcXgAUcn3L2gHS/doCEdApjASLMs6JnV9lChoBkdAcXRGR3eN1mgHS+JoCEdApjAeZZ0Sy3V9lChoBkdAY0qlqrR0EGgHTegDaAhHQKYwkoS+QEJ1fZQoaAZHQHCLd0zTF2poB0vWaAhHQKYxhuUD+zd1fZQoaAZHQG/MRcVxjrloB0vMaAhHQKYx3sOXmeV1fZQoaAZHQHEccCo0hvBoB0vYaAhHQKYx+5Dqnm91fZQoaAZHQHIDHV5KODJoB0vfaAhHQKYyM2c8Tzx1fZQoaAZHQHEsN1EE1VJoB0vaaAhHQKYycHVPN3Z1fZQoaAZHQHLpLlA/s3RoB0vcaAhHQKYymPhhpg11fZQoaAZHQGSGcLronrpoB03oA2gIR0CmMsK7qY7adX2UKGgGR0Bi4w8QqZtvaAdN6ANoCEdApjNMyLyc1HV9lChoBkdAcCCn6VMVUWgHS9toCEdApjN6R6nivXV9lChoBkdAchDr/Khcq2gHS+xoCEdApjOW0zCUHXV9lChoBkdAcdVI8QqZt2gHS9VoCEdApjPkrsjVx3V9lChoBkdAcbypda+vhmgHS/hoCEdApjQqzu4PPXV9lChoBkdAZz/K28Zk1GgHTegDaAhHQKY0TV1fVqh1fZQoaAZHQHE3VFtsN2FoB0u2aAhHQKY0k++M6zV1fZQoaAZHQHJoNXT3IuJoB0v2aAhHQKY0pNet0V91fZQoaAZHQG8QoYNy5qdoB0vXaAhHQKY0x62v0RR1fZQoaAZHQHGeCZF5OahoB0veaAhHQKY1MZML4N91fZQoaAZHQHCUubZvkzZoB0vZaAhHQKY1SmVqveR1fZQoaAZHQHAaLGBFuvVoB0vLaAhHQKY1kAPuogp1fZQoaAZHQHBgdCE6DGtoB0vcaAhHQKY1pXarWAh1fZQoaAZHQHAcgpWmxdJoB0vsaAhHQKY1uKzAvct1fZQoaAZHQHHYuKXOW0JoB0vKaAhHQKY2AYw7DEZ1fZQoaAZHQHMI6ij+JgtoB0vCaAhHQKY2KkC3gDR1fZQoaAZHQHBqBV+7UXpoB0vYaAhHQKY2WuIyj591fZQoaAZHQHKOMajvd/JoB0vLaAhHQKY20H0K7Zp1fZQoaAZHQHAjWgBcRlJoB0v0aAhHQKY3JO9nK4h1fZQoaAZHQG67TpPhybRoB0vHaAhHQKY3QxrSE151fZQoaAZHQHIr0Ne+mFdoB0vPaAhHQKY3ToIOYpl1fZQoaAZHQHD7u6d1+y9oB0vDaAhHQKY3WamXPZ91fZQoaAZHQHFcFK5CngpoB0u9aAhHQKY3ya1Cw8p1fZQoaAZHQHAfxi1AqutoB00fAWgIR0CmOBikoF3ZdX2UKGgGR0BxXkpiI+GHaAdLvWgIR0CmOEXFLnLadX2UKGgGR0Bww3FId2gWaAdLwGgIR0CmOJ/q5byIdX2UKGgGR0BhrT7bcoH+aAdN6ANoCEdApjjT/yXlbXV9lChoBkdAcJu7g88s+WgHS/toCEdApjj26Ae7tnV9lChoBkdAcsK1G9YfXGgHS9toCEdApjla4MF2V3V9lChoBkdAcMlf3N9piGgHTRYBaAhHQKY5anl4keJ1fZQoaAZHQHFDRe5WilBoB00CAWgIR0CmOa+sgdOqdX2UKGgGR0BxDiU9pyp8aAdL42gIR0CmOe3dsSCfdX2UKGgGR0BzFvKp1ie/aAdLvWgIR0CmOe0Rvm5ldX2UKGgGR0BwSsGzKLbYaAdL0GgIR0CmOfsgU1yedX2UKGgGR0BuDX6wdKdyaAdLyGgIR0CmOgcHObAldX2UKGgGR0BwBJYLb5/LaAdLxWgIR0CmOnc4xUNsdX2UKGgGR0BwqB5iVjZtaAdLx2gIR0CmOvUS7GvPdX2UKGgGR0ByZM12q1gIaAdL1WgIR0CmOv4jKPn0dX2UKGgGR0Bw3p8b70nPaAdLwGgIR0CmOzQ/HHWCdX2UKGgGR0BwRCQ3gk1NaAdL0GgIR0CmO6ESuhbodX2UKGgGR0BzZJHMEA5raAdLzWgIR0CmO7jT8YQ8dX2UKGgGR0BzvQsMAmzCaAdLvmgIR0CmPEW8qWkadX2UKGgGR0Bx72PHT7VKaAdL1mgIR0CmPFSe7L+xdX2UKGgGR0By+P0L+glGaAdL5WgIR0CmPH8mKIi1dX2UKGgGR0BvyNGZuyeJaAdLvmgIR0CmPJ2e6I3zdX2UKGgGR0Bzmb81n/T9aAdLyGgIR0CmPLJkGzKLdX2UKGgGR0Bz8Yp7TlT4aAdL0GgIR0CmPOi7btZ3dX2UKGgGR0BxKmkO7QLNaAdLvGgIR0CmPRfnW8RMdX2UKGgGR0ByzyBXjlxPaAdLxmgIR0CmPcUYCQtBdX2UKGgGR0BwatoQFs55aAdL2mgIR0CmPlgG0NSZdX2UKGgGR0BykuwpvxYraAdL9WgIR0CmPn6MaS9vdX2UKGgGR0BvVGsxO+IuaAdLxmgIR0CmPocfms/6dX2UKGgGR0BlHp6Ww/xEaAdN6ANoCEdApj7JjMFEA3V9lChoBkdAcPdNUOuq3mgHTV4BaAhHQKY+7T9bX6J1fZQoaAZHQHBDCWqtHQRoB0vraAhHQKY/K++ueSV1fZQoaAZHQHGEny3CsOpoB0u6aAhHQKY/Oakyk9F1fZQoaAZHQG9o619fCyhoB0vcaAhHQKY/fIWgvlF1fZQoaAZHQHGUJ1ie/YdoB0vQaAhHQKY/oBwMpgF1fZQoaAZHQHLCB0ZFXq9oB00AAWgIR0CmQAFWfbsXdX2UKGgGR0ByHbwd8zAOaAdL4mgIR0CmQCaTnq3WdX2UKGgGR0Bxyi6f8MuwaAdL5GgIR0CmQFxODaoNdX2UKGgGR0BxQjDgqEvkaAdLvWgIR0CmQSfe1rqMdX2UKGgGR0BxhiiwjdHlaAdLqWgIR0CmQaavRqoIdX2UKGgGR0By146Oo5xSaAdL+WgIR0CmQgbDEWIodX2UKGgGR0Byh9Vea8YiaAdL8GgIR0CmQgzdUKiPdX2UKGgGR0Bxl72bobGWaAdLxGgIR0CmQgy3Td+HdX2UKGgGR0Bxa9SeiBXkaAdL3mgIR0CmQiyXdCVsdX2UKGgGR0Bx37e67NB4aAdNDQFoCEdApkLGbXpW3nV9lChoBkdAbtfgiNbTt2gHS8RoCEdApkMKDyvs7nV9lChoBkdAcRyrEcbR4WgHS+1oCEdApkMQxWT5f3V9lChoBkdAcwwsfaHsTmgHS/FoCEdApkNFbs4T9XV9lChoBkdAY53Jsfq5b2gHTegDaAhHQKZDWKiO/+N1fZQoaAZHQHD9M50bLlpoB0vRaAhHQKZDZB2OhkB1fZQoaAZHQHKAzP4VRDVoB0vlaAhHQKZD24vvjOt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}