--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: malaysia-news-classification-bert-english-skewness-fixed results: [] --- # malaysia-news-classification-bert-english-skewness-fixed This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2051 - Accuracy: 0.8436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ## Label Mappings This model can predict the following labels: - `0`: Election - `1`: Political Issue - `2`: Corruption - `3`: Democracy - `4`: Economic Growth - `5`: Economic Disparity - `6`: Economic Subsidy - `7`: Ethnic Discrimination - `8`: Ethnic Relation - `9`: Ethnic Culture - `10`: Religious Issue - `11`: Business and Finance - `12`: Sport - `13`: Food - `14`: Entertainment - `15`: Environmental Issue - `16`: Domestic News - `17`: World News ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 358 | 0.9357 | 0.7486 | | 1.3554 | 2.0 | 716 | 0.9041 | 0.7807 | | 0.4851 | 3.0 | 1074 | 0.7842 | 0.8282 | | 0.4851 | 4.0 | 1432 | 0.9478 | 0.8226 | | 0.2558 | 5.0 | 1790 | 1.0765 | 0.8282 | | 0.1084 | 6.0 | 2148 | 1.1310 | 0.8380 | | 0.0625 | 7.0 | 2506 | 1.0999 | 0.8464 | | 0.0625 | 8.0 | 2864 | 1.1391 | 0.8408 | | 0.0301 | 9.0 | 3222 | 1.1036 | 0.8506 | | 0.0171 | 10.0 | 3580 | 1.0765 | 0.8534 | | 0.0171 | 11.0 | 3938 | 1.1291 | 0.8506 | | 0.0129 | 12.0 | 4296 | 1.1360 | 0.8520 | | 0.0035 | 13.0 | 4654 | 1.1619 | 0.8450 | | 0.0039 | 14.0 | 5012 | 1.1727 | 0.8534 | | 0.0039 | 15.0 | 5370 | 1.2079 | 0.8408 | | 0.0031 | 16.0 | 5728 | 1.2051 | 0.8436 | ### Framework versions - Transformers 4.18.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.12.1