YagiASAFAS
commited on
Commit
•
07608dd
1
Parent(s):
becb30e
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: malaysia-news-classification-bert-malay-skewness-fixed
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# malaysia-news-classification-bert-malay-skewness-fixed
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.0191
|
20 |
+
- Accuracy: 0.7277
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 3e-05
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 32
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 64
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 10
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| No log | 0.98 | 44 | 2.0942 | 0.4525 |
|
55 |
+
| No log | 1.98 | 88 | 1.5309 | 0.6103 |
|
56 |
+
| No log | 2.98 | 132 | 1.2585 | 0.6774 |
|
57 |
+
| No log | 3.98 | 176 | 1.1239 | 0.6955 |
|
58 |
+
| No log | 4.98 | 220 | 1.0726 | 0.7165 |
|
59 |
+
| No log | 5.98 | 264 | 1.0592 | 0.7151 |
|
60 |
+
| No log | 6.98 | 308 | 1.0330 | 0.7221 |
|
61 |
+
| No log | 7.98 | 352 | 1.0473 | 0.7123 |
|
62 |
+
| No log | 8.98 | 396 | 1.0356 | 0.7207 |
|
63 |
+
| No log | 9.98 | 440 | 1.0191 | 0.7277 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.18.0
|
69 |
+
- Pytorch 2.2.1+cu121
|
70 |
+
- Datasets 2.19.0
|
71 |
+
- Tokenizers 0.12.1
|