system HF staff commited on
Commit
510c171
1 Parent(s): 588e2e7

Commit From AutoTrain

Browse files
.gitattributes CHANGED
@@ -25,3 +25,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
30
+ *.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags: autotrain
3
+ language: unk
4
+ widget:
5
+ - text: "I love AutoTrain 🤗"
6
+ datasets:
7
+ - Yah216/autotrain-data-poem_meter_classification
8
+ co2_eq_emissions: 1.8892280988467902
9
+ ---
10
+
11
+ # Model Trained Using AutoTrain
12
+
13
+ - Problem type: Multi-class Classification
14
+ - Model ID: 913229914
15
+ - CO2 Emissions (in grams): 1.8892280988467902
16
+
17
+ ## Validation Metrics
18
+
19
+ - Loss: 1.0592747926712036
20
+ - Accuracy: 0.6535535147098981
21
+ - Macro F1: 0.46508274468173677
22
+ - Micro F1: 0.6535535147098981
23
+ - Weighted F1: 0.6452975497424681
24
+ - Macro Precision: 0.6288501119526966
25
+ - Micro Precision: 0.6535535147098981
26
+ - Weighted Precision: 0.6818087199275457
27
+ - Macro Recall: 0.3910156950920188
28
+ - Micro Recall: 0.6535535147098981
29
+ - Weighted Recall: 0.6535535147098981
30
+
31
+
32
+ ## Usage
33
+
34
+ You can use cURL to access this model:
35
+
36
+ ```
37
+ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Yah216/autotrain-poem_meter_classification-913229914
38
+ ```
39
+
40
+ Or Python API:
41
+
42
+ ```
43
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
44
+
45
+ model = AutoModelForSequenceClassification.from_pretrained("Yah216/autotrain-poem_meter_classification-913229914", use_auth_token=True)
46
+
47
+ tokenizer = AutoTokenizer.from_pretrained("Yah216/autotrain-poem_meter_classification-913229914", use_auth_token=True)
48
+
49
+ inputs = tokenizer("I love AutoTrain", return_tensors="pt")
50
+
51
+ outputs = model(**inputs)
52
+ ```
config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AutoTrain",
3
+ "_num_labels": 23,
4
+ "architectures": [
5
+ "BertForSequenceClassification"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "\u0627\u0644\u0628\u0633\u064a\u0637",
15
+ "1": "\u0627\u0644\u062e\u0641\u064a\u0641",
16
+ "2": "\u0627\u0644\u062f\u0648\u0628\u064a\u062a",
17
+ "3": "\u0627\u0644\u0631\u062c\u0632",
18
+ "4": "\u0627\u0644\u0631\u0645\u0644",
19
+ "5": "\u0627\u0644\u0633\u0631\u064a\u0639",
20
+ "6": "\u0627\u0644\u0633\u0644\u0633\u0644\u0629",
21
+ "7": "\u0627\u0644\u0637\u0648\u064a\u0644",
22
+ "8": "\u0627\u0644\u0643\u0627\u0645\u0644",
23
+ "9": "\u0627\u0644\u0645\u062a\u062f\u0627\u0631\u0643",
24
+ "10": "\u0627\u0644\u0645\u062a\u0642\u0627\u0631\u0628",
25
+ "11": "\u0627\u0644\u0645\u062c\u062a\u062b",
26
+ "12": "\u0627\u0644\u0645\u062f\u064a\u062f",
27
+ "13": "\u0627\u0644\u0645\u0636\u0627\u0631\u0639",
28
+ "14": "\u0627\u0644\u0645\u0642\u062a\u0636\u0628",
29
+ "15": "\u0627\u0644\u0645\u0646\u0633\u0631\u062d",
30
+ "16": "\u0627\u0644\u0645\u0648\u0627\u0644\u064a\u0627",
31
+ "17": "\u0627\u0644\u0647\u0632\u062c",
32
+ "18": "\u0627\u0644\u0648\u0627\u0641\u0631",
33
+ "19": "\u0634\u0639\u0631 \u0627\u0644\u062a\u0641\u0639\u064a\u0644\u0629",
34
+ "20": "\u0634\u0639\u0631 \u062d\u0631",
35
+ "21": "\u0639\u0627\u0645\u064a",
36
+ "22": "\u0645\u0648\u0634\u062d"
37
+ },
38
+ "initializer_range": 0.02,
39
+ "intermediate_size": 3072,
40
+ "label2id": {
41
+ "\u0627\u0644\u0628\u0633\u064a\u0637": 0,
42
+ "\u0627\u0644\u062e\u0641\u064a\u0641": 1,
43
+ "\u0627\u0644\u062f\u0648\u0628\u064a\u062a": 2,
44
+ "\u0627\u0644\u0631\u062c\u0632": 3,
45
+ "\u0627\u0644\u0631\u0645\u0644": 4,
46
+ "\u0627\u0644\u0633\u0631\u064a\u0639": 5,
47
+ "\u0627\u0644\u0633\u0644\u0633\u0644\u0629": 6,
48
+ "\u0627\u0644\u0637\u0648\u064a\u0644": 7,
49
+ "\u0627\u0644\u0643\u0627\u0645\u0644": 8,
50
+ "\u0627\u0644\u0645\u062a\u062f\u0627\u0631\u0643": 9,
51
+ "\u0627\u0644\u0645\u062a\u0642\u0627\u0631\u0628": 10,
52
+ "\u0627\u0644\u0645\u062c\u062a\u062b": 11,
53
+ "\u0627\u0644\u0645\u062f\u064a\u062f": 12,
54
+ "\u0627\u0644\u0645\u0636\u0627\u0631\u0639": 13,
55
+ "\u0627\u0644\u0645\u0642\u062a\u0636\u0628": 14,
56
+ "\u0627\u0644\u0645\u0646\u0633\u0631\u062d": 15,
57
+ "\u0627\u0644\u0645\u0648\u0627\u0644\u064a\u0627": 16,
58
+ "\u0627\u0644\u0647\u0632\u062c": 17,
59
+ "\u0627\u0644\u0648\u0627\u0641\u0631": 18,
60
+ "\u0634\u0639\u0631 \u0627\u0644\u062a\u0641\u0639\u064a\u0644\u0629": 19,
61
+ "\u0634\u0639\u0631 \u062d\u0631": 20,
62
+ "\u0639\u0627\u0645\u064a": 21,
63
+ "\u0645\u0648\u0634\u062d": 22
64
+ },
65
+ "layer_norm_eps": 1e-12,
66
+ "max_length": 64,
67
+ "max_position_embeddings": 512,
68
+ "model_type": "bert",
69
+ "num_attention_heads": 12,
70
+ "num_hidden_layers": 12,
71
+ "pad_token_id": 0,
72
+ "padding": "max_length",
73
+ "pooler_fc_size": 768,
74
+ "pooler_num_attention_heads": 12,
75
+ "pooler_num_fc_layers": 3,
76
+ "pooler_size_per_head": 128,
77
+ "pooler_type": "first_token_transform",
78
+ "position_embedding_type": "absolute",
79
+ "problem_type": "single_label_classification",
80
+ "torch_dtype": "float32",
81
+ "transformers_version": "4.15.0",
82
+ "type_vocab_size": 2,
83
+ "use_cache": true,
84
+ "vocab_size": 64000
85
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:694a2064d5f6e3d280a91be7ad845c6587c675aef1a344d175b885a2c62bf55b
3
+ size 540928237
sample_input.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e97dcfedbe473226de8c76467dc06dc18d215f727ecdecaae64957daf487f3a4
3
+ size 2848
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "max_len": 512, "do_basic_tokenize": true, "never_split": ["+وا", "س+", "[مستخدم]", "+ك", "+هم", "+ة", "+ن", "لل+", "[بريد]", "[رابط]", "+ه", "+كن", "+ا", "+ات", "+ي", "ب+", "+نا", "+هن", "+كم", "ك+", "+ين", "+هما", "و+", "+كما", "+ان", "+ت", "+ون", "ل+", "+ها", "ال+", "ف+"], "special_tokens_map_file": null, "full_tokenizer_file": null, "name_or_path": "AutoTrain", "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff