--- tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: mixed_model_finetuned_iemocap results: [] --- [Visualize in Weights & Biases](https://wandb.ai/yassmenyoussef55-arete-global/huggingface/runs/3kve6vtw) # mixed_model_finetuned_iemocap This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9700 - Accuracy: 0.6763 - F1: 0.6730 - Recall: 0.6763 - Precision: 0.6733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1467 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.72 | 0.9990 | 733 | 1.0095 | 0.6443 | 0.6369 | 0.6443 | 0.6469 | | 0.5228 | 1.9993 | 1467 | 0.9700 | 0.6763 | 0.6730 | 0.6763 | 0.6733 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1