File size: 1,961 Bytes
39354d7 c3ff672 39354d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: vivit-b-16x2-kinetics400-finetuned-cremad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/yassmenyoussef55-arete-global/huggingface/runs/4jineisc)
# vivit-b-16x2-kinetics400-finetuned-cremad
This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on CREMA-D dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1824
- Accuracy: 0.6575
- F1: 0.6595
- Recall: 0.6575
- Precision: 0.6676
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 11906
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 1.54 | 0.5 | 5953 | 1.7615 | 0.4614 | 0.4420 | 0.4614 | 0.5095 |
| 0.7419 | 1.5 | 11906 | 1.1824 | 0.6575 | 0.6595 | 0.6575 | 0.6676 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|