File size: 1,961 Bytes
39354d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3ff672
39354d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: vivit-b-16x2-kinetics400-finetuned-cremad
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/yassmenyoussef55-arete-global/huggingface/runs/4jineisc)
# vivit-b-16x2-kinetics400-finetuned-cremad

This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on CREMA-D dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1824
- Accuracy: 0.6575
- F1: 0.6595
- Recall: 0.6575
- Precision: 0.6676

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 11906

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Recall | Precision |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 1.54          | 0.5   | 5953  | 1.7615          | 0.4614   | 0.4420 | 0.4614 | 0.5095    |
| 0.7419        | 1.5   | 11906 | 1.1824          | 0.6575   | 0.6595 | 0.6575 | 0.6676    |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1