YeRyeongLee
commited on
Commit
•
540ee64
1
Parent(s):
839b386
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: bertweet-base-finetuned-filtered-0609
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# bertweet-base-finetuned-filtered-0609
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.5397
|
22 |
+
- Accuracy: 0.9299
|
23 |
+
- Precision: 0.9297
|
24 |
+
- Recall: 0.9299
|
25 |
+
- F1: 0.9298
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_steps: 1000
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 0.331 | 1.0 | 3180 | 0.3687 | 0.9069 | 0.9147 | 0.9069 | 0.9081 |
|
58 |
+
| 0.2611 | 2.0 | 6360 | 0.3725 | 0.9223 | 0.9227 | 0.9223 | 0.9224 |
|
59 |
+
| 0.1993 | 3.0 | 9540 | 0.2948 | 0.9336 | 0.9350 | 0.9336 | 0.9339 |
|
60 |
+
| 0.1648 | 4.0 | 12720 | 0.3563 | 0.9296 | 0.9303 | 0.9296 | 0.9298 |
|
61 |
+
| 0.1324 | 5.0 | 15900 | 0.4136 | 0.9267 | 0.9279 | 0.9267 | 0.9270 |
|
62 |
+
| 0.1102 | 6.0 | 19080 | 0.4060 | 0.9352 | 0.9357 | 0.9352 | 0.9353 |
|
63 |
+
| 0.0568 | 7.0 | 22260 | 0.4653 | 0.9321 | 0.9328 | 0.9321 | 0.9322 |
|
64 |
+
| 0.0292 | 8.0 | 25440 | 0.4818 | 0.9311 | 0.9310 | 0.9311 | 0.9310 |
|
65 |
+
| 0.0155 | 9.0 | 28620 | 0.5405 | 0.9286 | 0.9288 | 0.9286 | 0.9286 |
|
66 |
+
| 0.0095 | 10.0 | 31800 | 0.5397 | 0.9299 | 0.9297 | 0.9299 | 0.9298 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.19.2
|
72 |
+
- Pytorch 1.9.1+cu111
|
73 |
+
- Datasets 1.16.1
|
74 |
+
- Tokenizers 0.12.1
|