--- license: creativeml-openrail-m base_model: kandinsky-community/kandinsky-2-2-prior datasets: - lambdalabs/pokemon-blip-captions tags: - kandinsky - text-to-image - diffusers inference: true --- # Finetuning - YiYiXu/kandinsky_prior_pokemon This pipeline was finetuned from **kandinsky-community/kandinsky-2-2-prior** on the **lambdalabs/pokemon-blip-captions** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A robot pokemon, 4k photo']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipe_prior = DiffusionPipeline.from_pretrained("YiYiXu/kandinsky_prior_pokemon", torch_dtype=torch.float16) pipe_t2i = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16) prompt = "A robot pokemon, 4k photo" image_embeds, negative_image_embeds = pipe_prior(prompt, guidance_scale=1.0).to_tuple() image = pipe_t2i(image_embeds=image_embeds, negative_image_embeds=negative_image_embeds).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 2 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 1 * Image resolution: 768 * Mixed-precision: fp16 More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/yiyixu/text2image-fine-tune/runs/90ljjfwe).