Yogesh1p's picture
Model save
ac1adf3
|
raw
history blame
2.37 kB
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-cp3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6964285714285714
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-cp3
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7260
- Accuracy: 0.6964
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 9
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 4 | 0.8084 | 0.6786 |
| No log | 2.0 | 8 | 0.8043 | 0.6964 |
| 0.7014 | 3.0 | 12 | 0.8072 | 0.6964 |
| 0.7014 | 4.0 | 16 | 0.7646 | 0.7321 |
| 0.5379 | 5.0 | 20 | 0.7575 | 0.6964 |
| 0.5379 | 6.0 | 24 | 0.6960 | 0.75 |
| 0.5379 | 7.0 | 28 | 0.7306 | 0.6964 |
| 0.5404 | 8.0 | 32 | 0.7448 | 0.6964 |
| 0.5404 | 9.0 | 36 | 0.7260 | 0.6964 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0