metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-cp3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8035714285714286
swin-tiny-patch4-window7-224-finetuned-cp3
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6641
- Accuracy: 0.8036
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 9
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 4 | 0.8434 | 0.6964 |
No log | 2.0 | 8 | 0.7171 | 0.7321 |
0.797 | 3.0 | 12 | 0.6665 | 0.7321 |
0.797 | 4.0 | 16 | 0.6641 | 0.8036 |
0.5977 | 5.0 | 20 | 0.6915 | 0.7679 |
0.5977 | 6.0 | 24 | 0.6245 | 0.8036 |
0.5977 | 7.0 | 28 | 0.6159 | 0.7679 |
0.5246 | 8.0 | 32 | 0.6760 | 0.7321 |
0.5246 | 9.0 | 36 | 0.6978 | 0.6607 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0