File size: 26,660 Bytes
4768a66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
---
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:16
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Please contact each construction office of the Construction Bureau.
The police will respond in cooperation with the police and other authorities.
For the telephone number of each construction office, please refer to the link
"Area Management Offices and Construction Offices".
sentences:
- I have an abandoned vehicle on the street, what should I do?
- Do I need special permission to place a giant ad?
- What is katagatashi/tai?
- source_sentence: Currently, there are four Seseragi-no-Sato (Seseragi-no-Sato) oases
in the city filled with flowers and greenery, as an oasis of relaxation and luster.
How about touring the "Seseragi-no-Sato" while admiring the seasonal flowers?
Please take a stroll. For more information, please refer to the link "Flower Sewage
Treatment Plant and Seseragi no Sato (Sewage Treatment Plant and Seseragi no Sato)".
For more information, please refer to the link "Sewage Treatment Plants and Seseragi
no Sato (Flower Sewage Treatment Plants and Seseragi no Sato)".
sentences:
- I want to install a sign on the road. Do I need any permits?
- Who can I talk to about housing?
- I would like to know more about Seseragi no Sato.
- source_sentence: 'The Osaka Municipal Housing Information Center provides comprehensive
information on housing, and consists of the Housing Information Plaza, which provides
various consultations and information on housing, and the Osaka Kurashi-no Konjikan,
a museum of housing that exhibits the culture and history of housing and people''s
lives. Location and Access] Location: 6-4-20 Tenjinbashi, Kita-ku, Osaka Access:
- Direct connection from Exit 3 of Tenjinbashisuji Rokuchome Station on the Osaka
Metro Tanimachi Line, Sakaisuji Line, and Hankyu Railway - Approximately 650 m
north of Tenma Station on the JR Loop Line - Approximately 2 km by cab from Midosuji
South Exit of JR Osaka Station via Miyakojima-dori, 7 minutes by car By car: Approx.
500 m from Nagara Exit on the Moriguchi Line of Hanshin Expressway via Miyakojima-dori
Street. ◆Housing Information Plaza Hours: Weekdays and Saturdays: 9:00-19:00,
Sundays and National Holidays: 10:00-17:00, Closed: Tuesdays (closed the following
day if Tuesday is a national vacation), the day after national holidays (except
Sundays and Mondays), year-end and New Year holidays (12/29 - 1/3) *Special holidays
may occur in addition to the above. ◆Housing Museum "Osaka Kurashi no Konjakukan"
Hours: 10:00 - 17:00 (admission until 16:30) Closed: Tuesdays, Year-end and New
Year holidays (12/29 - 1/3) *The museum may be open or closed on a temporary basis
in addition to the above. In addition to the above, the museum may be open or
closed temporarily. 6208-9224 Fax: 06-6202-7064'
sentences:
- Please tell me about the Osaka Municipal Housing Information Center.
- Where is advertising prohibited?
- How much is the admission fee to Osaka Kurashi-no-Museum?
- source_sentence: 'A pamphlet and leaflet, "Sewerage in Osaka City," which introduces
the sewerage system of Osaka City, including its structure and roles, are distributed
at City Hall and other locations. They are also available on the city website.
You can also tour the following sewerage facilities. All tours are free of charge.
Taikoh Sewer: You can visit the Taikoh Sewer, a designated cultural asset of Osaka
City. Those who wish to tour the underground facilities must apply in advance.
Maishima Sludge Center Sludge Treatment Facility】Persons wishing to tour the sludge
treatment facility are required to apply in advance. Sewage Treatment Plants】Persons
wishing to tour the facilities should contact the respective sewage treatment
plant in advance. (Tours may not be available due to construction work at sewage
treatment plants.) For details, please refer to the following links: "Leaflet
"Sewerage in Osaka City" (digest version)," "Pamphlet "Sewerage in Osaka City,"
"Taikoh Sewage Treatment Plant," "Maishima Sludge Center (sewage sludge treatment
plant)," "Osaka City Visual Sewage Plan," "Osaka Eco Kids: Learn Sewage! for more
information.'
sentences:
- I want to know how the sewage system works.
- How much is the rent for Osaka City's excellent rental housing for the elderly?
- Please tell me about K.K. General Rental Housing and K.K. Sumai Ringu.
- source_sentence: For posters, billboards, etc. on roads that are in violation of
the ordinance, we systematically provide corrective guidance and remove them,
as well as conduct road patrols as needed. In addition, for minor violations such
as posters and billboards, we also remove them through the activities of contractors
and citizen volunteers called "Katayaki-Tai". For details, please refer to the
link "Recruitment of "KATADACHI-TAI" (a system for removing simple advertisements
on the street)". For more information, please refer to the link "Simple Roadside
Advertisement Removal Activities" for details.
sentences:
- I am thinking of buying a house in Osaka City, is there any assistance available?
(Newlyweds and families raising children)
- What is the maximum size of a billboard or advertisement?
- What measures are in place to deal with objectionable signs and posters?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: intfloat/multilingual e5 small
type: intfloat/multilingual-e5-small
metrics:
- type: cosine_accuracy@1
value: 0.75
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.75
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.75
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9077324383928644
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.875
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.875
name: Cosine Map@100
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Yohhei/batch32-100")
# Run inference
sentences = [
'For posters, billboards, etc. on roads that are in violation of the ordinance, we systematically provide corrective guidance and remove them, as well as conduct road patrols as needed. In addition, for minor violations such as posters and billboards, we also remove them through the activities of contractors and citizen volunteers called "Katayaki-Tai". For details, please refer to the link "Recruitment of "KATADACHI-TAI" (a system for removing simple advertisements on the street)". For more information, please refer to the link "Simple Roadside Advertisement Removal Activities" for details.',
'What measures are in place to deal with objectionable signs and posters?',
'I am thinking of buying a house in Osaka City, is there any assistance available? (Newlyweds and families raising children)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `intfloat/multilingual-e5-small`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.75 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.75 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.75 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9077 |
| cosine_mrr@10 | 0.875 |
| **cosine_map@100** | **0.875** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 16 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 51 tokens</li><li>mean: 226.69 tokens</li><li>max: 419 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 16.81 tokens</li><li>max: 31 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| <code>The following is a summary of K.H.I. General Rental Housing and K.H.I. Sumai Ringu. Outline】 ● KLH General Rental Housing and KLH Sumai Ringu are rental housing units for middle class households where the annual income of the applicant household must be within a certain range. The public corporation's Sumai Ringu housing is a unit to which the government's specified excellent rental housing system, etc., is applied, and the government and Osaka City subsidize a portion of the rent for a certain period of time, depending on the income of the household moving in. Applications for vacant units are accepted on an as-needed basis. Please refer to the "List of Apartment Complexes" at the link below. Inquiries: ◆Osaka City Housing Corporation, Housing Management Department, Management Division, Recruitment Section Telephone: 06-6882-9000* Weekdays: 9:00 - 19:00 (Tuesdays and the day after national holidays (weekdays): 9:00 - 17:30) Saturdays: 9:00 - 19:00 Sundays and holidays: 10:00 - 17:00, except during the year-end and New Year holidays (December 29 - January 3).</code> | <code>Please tell me about K.K. General Rental Housing and K.K. Sumai Ringu.</code> |
| <code>There are permit criteria for each property for wall boards, towers (rooftop/ground), and boards (rooftop/ground), and permit criteria vary by location. Please refer to the "Permit Criteria" in the "Outdoor Advertisement Bookmark. (Downloadable from the website) △Link to "https://www.city.osaka.lg.jp/kensetsu/page/0000372127.html屋外広告物の許可について (Outdoor Advertisement Bookmark, Outdoor Advertisement Ordinance, etc.) [Inquiries] ◆Construction Bureau, Administration Division Phone: 06-6615-6687 Fax: 06-6615-6576</code> | <code>What is the maximum size of a billboard or advertisement?</code> |
| <code>Areas or properties where advertising materials may not be displayed are as follows In addition to the above, the following areas or properties are prohibited from displaying advertising materials: - Areas along the Hanshin Expressway up to 50 m on both sides and 15 m above the road surface level - Areas within the grounds of ancient tombs and cemeteries - Bridges, roadside trees, traffic signals, pedestrian railings, utility poles, mailboxes, transmission towers, statues, monuments, etc. - The Okawa Wind Area from Genpachi Bridge to Tenmabashi Bridge. In addition to the above, the display of posters, billboards, etc., advertising flags, and standing signs, etc., is prohibited on the following roads and in areas or locations facing these roads. Midosuji (from Osaka Station to Namba Station) ●Sakaisuji (from Naniwabashi to Nipponbashi) ●Tosabori Dori (from Higobashi to Yoshiyabashi) ●Uemachi-suji (from Otemae 1-chome, Chuo-ku to Hoenzaka 1-chome, Chuo-ku) ●Nagahori Dori (from Minami-Senba 1-chome, Chuo-ku to Minami Senba 1-chome, Chuo-ku) Dotonbori River promenade (from east side of Sumiyoshi Bridge to west side of Nihonbashi Bridge)-Please refer to the link. https://www.city.osaka.lg.jp/kensetsu/page/ 0000372127.htmlAbout Permission for Outdoor Advertisements (Outdoor Advertisement Booklet, Outdoor Advertisement Ordinance, etc.) [Inquiries: ◆Construction Bureau, Administration Division Tel: 06-6615-6687 Fax: 06-6615-6576</code> | <code>Where is advertising prohibited?</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | intfloat/multilingual-e5-small_cosine_map@100 |
|:-----:|:----:|:---------------------------------------------:|
| 0 | 0 | 0.875 |
### Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |