--- license: other library_name: peft tags: - generated_from_trainer base_model: decapoda-research/llama-7b-hf model-index: - name: llama-code results: [] --- # llama-code This model is a fine-tuned version of [decapoda-research/llama-7b-hf](https://huggingface.co/decapoda-research/llama-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float32 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 1234 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8108 | 0.36 | 50 | 1.7893 | | 1.6505 | 0.71 | 100 | 1.5672 | ### Framework versions - PEFT 0.6.0.dev0 - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3